Also adding structure to the ice cream is the formation of the ice crystals. Water freezes out of a solution in its pure form as ice. In a sugar solution such as ice cream, the initial freezing point of the solution is lower than 0° C due to these dissolved sugars (freezing point depression), which is mostly a function of the sugar content of the mix. As ice crystallization begins and water freezes out in its pure form, the concentration of the remaining solution of sugar is increased due to water removal and hence the freezing point is further lowered. This process is shown here, schematically.
This process of freeze concentration continues to very low temperatures. Even at the typical ice cream serving temperature of -16° C, only about 72% of the water is frozen. The rest remains as a very concentrated sugar solution. Thus when temperature is plotted against % water frozen, you get the phase diagram shown below. This helps to give ice cream its ability to be scooped and chewed at freezer temperatures. The air content also contributes to this ability, as mentioned in discussing overrun.