Treatment
The primary pharmacologic treatment for COPD is based on severity of the disease and response to therapy (see Primary management of COPD). Most studies demonstrate that inhaled beta2-agonists (short- and long-acting) with or without inhaled corticosteroids and inhaled anticholinergic (short- and long-acting) agents are the mainstay of COPD management.20-28,30-33 A variety of other pharmacologic agents and therapeutic modalities have been used for the successful management of COPD (see Other treatment strategies).
Mucolytic agents are used; however, the evidence is mixed in terms of overall benefit. Although theophylline (a methylxanthine) can reduce exacerbations, there is little impact on lung function.34 Additional pharmacologic therapies include the use of antibiotics and oral corticosteroids for exacerbations.
Several novel drugs have been recently introduced on the market. Studies of phosphodiesterase-4 inhibitors have been mixed. However, one oral drug, roflumilast, has been shown to improve lung function as well as decrease the frequency of exacerbations in patients with moderate and severe diseases.35-37 In 2012, the FDA approved an inhaled long-acting muscarinic antagonist, aclidinium bromide. Study findings for aclidinium bromide demonstrated improved airflow obstruction, increased exercise tolerance, and improved lung hyperinflation.38 In a 12-week study, an ultra-long-acting bronchodilator (indacaterol) was superior to salmeterol (a twice daily bronchodilator) in decreasing breathlessness and reducing the use of rescue medication.39,40 A recent clinical trial of a 5-lipoxygenase inhibitor, MK-0633, improved symptom complaints, but overall, did not demonstrate any improvement in lung function as measured by the FEV1.41
Many patients will ask about alternative treatments for COPD. Herbal-based expectorants with extracts from Hedera helix (ivy) or Thymus vulgaris (thyme) have been shown to have some efficacy.42 Ginseng has shown some improvement in all parameters of lung function; however, because of its antiplatelet effect, caution regarding long-term use is advised.42,43 Acupuncture may be effective for increasing exercise tolerance and reducing symptoms of dyspnea.42
Survey results methods
A survey was sent to 2,916 registered NPs obtained from Colorado State Board of Nursing. (The risk factors portion of this survey was reported in an earlier article [in press] "Risk factors for COPD: what do NPs know?".)44
Only 239 surveys were returned, resulting in an 8% response rate. The survey consisted of demographic information (age, gender, years in practice, certification, etc.) and questions about smoking, symptoms, early diagnostic test, and primary pharmacologic management of COPD. Every section had an "other" option enabling the respondent to add supplemental information. Areas of certification of the respondents were family, 45%; adult, 15%; women's health, 12%; pediatric, 7%; gerontology, 3%; and other, 10%.
Results item response rates
A list of correct item response rates for all NPs was calculated (see Percentage of correct responses of NPs by certification). The three major symptoms associated with COPD (chronic cough 97%, dyspnea with exertion 97%, and sputum production 90%) were identified by the majority of NPs. The other symptoms, such as peripheral edema, chest tightness, and nocturnal awakening, were recognized less frequently. Ten percent of the respondents listed other symptoms, such as weight loss, fatigue, pallor, cyanosis, barrel chest, frequent infections, and nail clubbing.
The primary diagnostic tool for COPD is spirometry post bronchodilator. Forty-five percent of all respondents indicated spirometry with bronchodilator reversibility. Several NPs indicated chest X-rays, pulmonary function tests, arterial blood gases, pulse oximetry, sleep studies, computed tomography scan, and labs, such as complete blood count, chemistry profile, brain natriuretic peptide, and alpha-1 antitrypsin as primary diagnostic tools.
Finally, the majority of NPs indicated that they favored the use of inhaled pharmacologic treatments as their primary management of COPD compared to alternatives. Other management strategies identified were oxygen, antibiotics, smoking cessation, nutritional support, and pulmonary rehabilitation.
Correct item identification by area
The authors hypothesized that NPs would differ in their ability to identify COPD symptoms, early diagnostic procedures, and primary treatment methods based on their area of certification. Specifically, adult and family NPs would have more knowledge of COPD than population-specific NPs (a group created by combining NPs certified in pediatric, women's health, and gerontology; n = 53). This hypothesis was based on the assumption that population-specific NPs would have more specialized knowledge of COPD, as it pertains to their target population, while adult and family NPs would have a broader knowledge of COPD because of the diversity of their patient population.
The same type of statistical test could not be used to test this hypothesis for all three questions (symptoms, diagnostic procedures, and treatment methods) because the dependent variable, or what should be considered a correctly identified item, changes depending on the question. For instance, all items listed under "symptoms" are actual symptoms of COPD and should have been identified by NPs. However, for "early diagnostic procedures," only spirometry and bronchodilator reversibility should have been identified, and under "primary treatment" only inhaled anticholinergics, inhaled beta2-agonists, and inhaled glucocorticosteroids should have been identified. For symptoms, a one-way analysis of variance (ANOVA) was used while a mixed ANOVA was used for diagnostic procedures and treatments. Test statistics (F values), probability values (p values), and both eta-squared ([eta]2) and partial eta-squared ([eta]2p) effect sizes are presented for each test when appropriate.
In a one-way ANOVA to test for differences in symptom identification, the independent variable was area of certification. A dependent variable was created by simply calculating the percentage of symptoms identified by each respondent. The scores ranged from 0% to 100% with a mean of 83% (with higher score indicating more symptoms identified). Results from the ANOVA indicated that there were no differences between NP groups in percentage of symptoms identified, F (2,194) = 0.89, p = 0.42, [eta]2 = .01. Contrary to our hypothesis, adult (86%), family (83%), and population-specific NPs (80%) identified about that same amount of COPD symptoms regardless of the area of certification.
To test the hypothesis that adult and family NPs would have a broader knowledge about early diagnostic procedures and primary treatment for COPD, a mixed ANOVA was performed. Each diagnostic procedure and treatment was treated as a repeated measures independent variable and the NP area of certification as a between subjects variable. The dependent variable was the amount of responses. Possible interactions were tested, and pairwise comparisons were utilized to test the hypotheses. If family and adult NPs display more knowledge about early diagnostic procedures and primary treatment than population-specific NPs, they should then identify an item more than population-specific NPs only when that item is correct. For instance, when identifying early diagnostic procedures, family and adult NPs should more often identify spirometry and bronchodilator reversibility than population-specific NPs. Additionally, family and adult NPs should correctly identify postbronchodilator and spirometry more frequently than population specific NPs and identify arterial blood gases, chest X-ray, and pulmonary functions tests no differently-or even less often-than population-specific NPs.
The test on diagnostic procedures was a 3 (area of certification: adult, family, population specific) x 5 (diagnostic test: arterial blood gases, bronchodilator reversibility, chest X-ray, pulmonary function test, spirometry) mixed ANOVA. There was a main effect for diagnostic test, F (4, 776) = 83.63, p < 0.001, [eta]2p = 0.30 but not for area of certification, F (1, 194) = 0.48, p = 0.62, [eta]2p = 0.01. There was a significant interaction, F (7.39, 776) = 3.26, p = 0.002, [eta]2p = 0.03 (Greenhouse-Geisser correction). Pairwise post-hoc comparisons showed that the relationship of the variables in this interaction was similar to the hypothesized. Population-specific NPs identified bronchodilator reversibility significantly less frequently than family NPs (p = 0.02) and marginally less frequently than adult NPs (p = 0.05). Both family (p = 0.02) and adult (p = 0.02) NPs identified spirometry significantly more often than population-specific NPs. No significant differences in item response were observed between NP types on chest X-rays or pulmonary function test. Population-specific NPs were significantly more likely to indicate arterial blood gases as a diagnostic tool for COPD than family NPs (p = 0.01) but not adult NPs (p = 0.17).
Treatment
The primary pharmacologic treatment for COPD is based on severity of the disease and response to therapy (see Primary management of COPD). Most studies demonstrate that inhaled beta2-agonists (short- and long-acting) with or without inhaled corticosteroids and inhaled anticholinergic (short- and long-acting) agents are the mainstay of COPD management.20-28,30-33 A variety of other pharmacologic agents and therapeutic modalities have been used for the successful management of COPD (see Other treatment strategies).
Mucolytic agents are used; however, the evidence is mixed in terms of overall benefit. Although theophylline (a methylxanthine) can reduce exacerbations, there is little impact on lung function.34 Additional pharmacologic therapies include the use of antibiotics and oral corticosteroids for exacerbations.
Several novel drugs have been recently introduced on the market. Studies of phosphodiesterase-4 inhibitors have been mixed. However, one oral drug, roflumilast, has been shown to improve lung function as well as decrease the frequency of exacerbations in patients with moderate and severe diseases.35-37 In 2012, the FDA approved an inhaled long-acting muscarinic antagonist, aclidinium bromide. Study findings for aclidinium bromide demonstrated improved airflow obstruction, increased exercise tolerance, and improved lung hyperinflation.38 In a 12-week study, an ultra-long-acting bronchodilator (indacaterol) was superior to salmeterol (a twice daily bronchodilator) in decreasing breathlessness and reducing the use of rescue medication.39,40 A recent clinical trial of a 5-lipoxygenase inhibitor, MK-0633, improved symptom complaints, but overall, did not demonstrate any improvement in lung function as measured by the FEV1.41
Many patients will ask about alternative treatments for COPD. Herbal-based expectorants with extracts from Hedera helix (ivy) or Thymus vulgaris (thyme) have been shown to have some efficacy.42 Ginseng has shown some improvement in all parameters of lung function; however, because of its antiplatelet effect, caution regarding long-term use is advised.42,43 Acupuncture may be effective for increasing exercise tolerance and reducing symptoms of dyspnea.42
Survey results methods
A survey was sent to 2,916 registered NPs obtained from Colorado State Board of Nursing. (The risk factors portion of this survey was reported in an earlier article [in press] "Risk factors for COPD: what do NPs know?".)44
Only 239 surveys were returned, resulting in an 8% response rate. The survey consisted of demographic information (age, gender, years in practice, certification, etc.) and questions about smoking, symptoms, early diagnostic test, and primary pharmacologic management of COPD. Every section had an "other" option enabling the respondent to add supplemental information. Areas of certification of the respondents were family, 45%; adult, 15%; women's health, 12%; pediatric, 7%; gerontology, 3%; and other, 10%.
Results item response rates
A list of correct item response rates for all NPs was calculated (see Percentage of correct responses of NPs by certification). The three major symptoms associated with COPD (chronic cough 97%, dyspnea with exertion 97%, and sputum production 90%) were identified by the majority of NPs. The other symptoms, such as peripheral edema, chest tightness, and nocturnal awakening, were recognized less frequently. Ten percent of the respondents listed other symptoms, such as weight loss, fatigue, pallor, cyanosis, barrel chest, frequent infections, and nail clubbing.
The primary diagnostic tool for COPD is spirometry post bronchodilator. Forty-five percent of all respondents indicated spirometry with bronchodilator reversibility. Several NPs indicated chest X-rays, pulmonary function tests, arterial blood gases, pulse oximetry, sleep studies, computed tomography scan, and labs, such as complete blood count, chemistry profile, brain natriuretic peptide, and alpha-1 antitrypsin as primary diagnostic tools.
Finally, the majority of NPs indicated that they favored the use of inhaled pharmacologic treatments as their primary management of COPD compared to alternatives. Other management strategies identified were oxygen, antibiotics, smoking cessation, nutritional support, and pulmonary rehabilitation.
Correct item identification by area
The authors hypothesized that NPs would differ in their ability to identify COPD symptoms, early diagnostic procedures, and primary treatment methods based on their area of certification. Specifically, adult and family NPs would have more knowledge of COPD than population-specific NPs (a group created by combining NPs certified in pediatric, women's health, and gerontology; n = 53). This hypothesis was based on the assumption that population-specific NPs would have more specialized knowledge of COPD, as it pertains to their target population, while adult and family NPs would have a broader knowledge of COPD because of the diversity of their patient population.
The same type of statistical test could not be used to test this hypothesis for all three questions (symptoms, diagnostic procedures, and treatment methods) because the dependent variable, or what should be considered a correctly identified item, changes depending on the question. For instance, all items listed under "symptoms" are actual symptoms of COPD and should have been identified by NPs. However, for "early diagnostic procedures," only spirometry and bronchodilator reversibility should have been identified, and under "primary treatment" only inhaled anticholinergics, inhaled beta2-agonists, and inhaled glucocorticosteroids should have been identified. For symptoms, a one-way analysis of variance (ANOVA) was used while a mixed ANOVA was used for diagnostic procedures and treatments. Test statistics (F values), probability values (p values), and both eta-squared ([eta]2) and partial eta-squared ([eta]2p) effect sizes are presented for each test when appropriate.
In a one-way ANOVA to test for differences in symptom identification, the independent variable was area of certification. A dependent variable was created by simply calculating the percentage of symptoms identified by each respondent. The scores ranged from 0% to 100% with a mean of 83% (with higher score indicating more symptoms identified). Results from the ANOVA indicated that there were no differences between NP groups in percentage of symptoms identified, F (2,194) = 0.89, p = 0.42, [eta]2 = .01. Contrary to our hypothesis, adult (86%), family (83%), and population-specific NPs (80%) identified about that same amount of COPD symptoms regardless of the area of certification.
To test the hypothesis that adult and family NPs would have a broader knowledge about early diagnostic procedures and primary treatment for COPD, a mixed ANOVA was performed. Each diagnostic procedure and treatment was treated as a repeated measures independent variable and the NP area of certification as a between subjects variable. The dependent variable was the amount of responses. Possible interactions were tested, and pairwise comparisons were utilized to test the hypotheses. If family and adult NPs display more knowledge about early diagnostic procedures and primary treatment than population-specific NPs, they should then identify an item more than population-specific NPs only when that item is correct. For instance, when identifying early diagnostic procedures, family and adult NPs should more often identify spirometry and bronchodilator reversibility than population-specific NPs. Additionally, family and adult NPs should correctly identify postbronchodilator and spirometry more frequently than population specific NPs and identify arterial blood gases, chest X-ray, and pulmonary functions tests no differently-or even less often-than population-specific NPs.
The test on diagnostic procedures was a 3 (area of certification: adult, family, population specific) x 5 (diagnostic test: arterial blood gases, bronchodilator reversibility, chest X-ray, pulmonary function test, spirometry) mixed ANOVA. There was a main effect for diagnostic test, F (4, 776) = 83.63, p < 0.001, [eta]2p = 0.30 but not for area of certification, F (1, 194) = 0.48, p = 0.62, [eta]2p = 0.01. There was a significant interaction, F (7.39, 776) = 3.26, p = 0.002, [eta]2p = 0.03 (Greenhouse-Geisser correction). Pairwise post-hoc comparisons showed that the relationship of the variables in this interaction was similar to the hypothesized. Population-specific NPs identified bronchodilator reversibility significantly less frequently than family NPs (p = 0.02) and marginally less frequently than adult NPs (p = 0.05). Both family (p = 0.02) and adult (p = 0.02) NPs identified spirometry significantly more often than population-specific NPs. No significant differences in item response were observed between NP types on chest X-rays or pulmonary function test. Population-specific NPs were significantly more likely to indicate arterial blood gases as a diagnostic tool for COPD than family NPs (p = 0.01) but not adult NPs (p = 0.17).
การแปล กรุณารอสักครู่..
