The control valve is a component of a control system often overlooked in a course on process control. In this chapter, the description, selection, and sizing of pneumatic control valves were presented. Valves may be of the pressure-to-close or the pressure-to-open type; the selection of the type is often related to safety considerations. If the air pressure fails, the valve should return to a position that ensures safe operating conditions for a process.
The flow capacity of a valve is based on an equation relating flow to the square root of the pressure drop across the valve; the proportionality constant Cv, the larger the flow.
Valves are classified according to their inherent flow characteristics such as linear or equal-percentage. A linear valve produces a flow (for constant pressure drop across the valve) that is proportional to the valve stem position, which in turn is proportional to the valve-top pressure.
The presence of a long, small-diameter line supplying a valve causes the pressure drop across the valve to decrease with the increase of flow, for a fixed overall pressure drop across the system. If the pressure drop in the line is excessive, the characteristic of the linear valve will become nonlinear and in terms of control theory, the steady-state gain Kv of the valve decreases with flow.
As a result of the change in valve gain, the controller in the loop must be read-justed for different flow rates to maintain the same degree of stability. To overcome this limitation of the linear valve, an equal-percentage (or logarithmic) valve is available for which the gain of the valve increase with flow rate. Such a valve compensates for the line loss and produces an effective characteristic that approaches a linear relation. The basis for the name equal-percentage (or logarithmic) is related to one form of the mathematical expression that describes the valve. In this form, an equal-percentage change in flow occurs for a specified change in step position, regardless of the step position.
To eliminate hysteresis, which can produce cycling and cause wear of the valve plug and seat, a valve positioner may be attached to a control valve. The positioner also speeds up the motion of the valve in response to a signal from the controller.