Circuit Description
The model shows two identical circuits with a three-phase transformer rated 225 kVA, 2400 V/600V, 60Hz, connected to a 1 MVA, 2400 V power network. A 45 kW resistive load (20 % of transformer nominal power) is connected on the 600 V side. Each phase of the transformer consists of two windings both connected in wye with a grounded neutral.
The transformers in circuit 1 and circuit 2 use two different models:
1) Circuit 1 uses a physical model (yellow block) where the core geometry and the B-H characteristic of the iron used to build the core are the basic parameters used for modelling the magnetic properties of the transformer.
2) Circuit 2 uses the Three-Phase Transformer Inductance Matrix Type (Two Windings) block (blue block) for modelling the linear part of the model. Saturation is modelled in the "Saturation" subsystem (cyan block) by three single-phase saturable transformers connected on the primary side of the linear transformer model.
In order to minimize the quantity of iron, the transformer core uses the core-type construction. Contrary to a three-phase transformer built with three independent units, the three phases of a core-type transformer are coupled. Because of these couplings, the transformer reactances in positive- and zero-sequence are quite different. When the three voltages applied on primary side are balanced, (positive-sequence voltage) the fluxes set up in each limb are also balanced and they stay trapped inside the magnetic core. However, when the voltage source or the load is unbalanced, a zero-sequence voltage is added to the positive- and negative sequences voltages. This zero-sequence voltage produces three flux components in phase in each limb, resulting in a zero-sequence flux component which has to circulate outside the iron core, through the air and transformer tank or casing. Due to the high reluctance (low permeability) of the flux return path through the air, the zero-sequence no-load excitation current is much higher than in positive sequence. For this particular model, zero-sequence excitation current exceeds 3 times the nominal current (344 %), as compared to only 2.2 % in positive sequence. Excitation current, no load active losses and short-circuit impedance R+j*X (where R=winding resistance, X=leakage reactance) have been measured for the physical model of circuit 1. Results are shown in the table below.
Look under the mask of the transformer of circuit 1 to see how the electrical and magnetic circuit models are built. The electrical part is implemented by six controlled current sources (one source per winding). These current sources are driven by the magnetomotive force developed by each winding. The "Core" subsystem uses the electric/magnetic analogy to implement the magnetic circuit which consists of 7 steel elements (3 limbs and 4 yokes in blue) and 7 air elements (in green) representing flux leakages for each of the six coils and flux zero-sequence return path.
The three figures below show respectively:
1) Iron B-H characteristic
2) Saturation characteristics for the three phases (flux in pu as function of peak magnetizing current in pu) when the transformer is excited in positive sequence (3 balanced voltages). These saturation characteristics obtained in positive sequence are used in the three single-phase saturable transformers to model saturation of the core-type transformer.
Using the positive-sequence saturation characteristics to model core saturation gives acceptable results even in presence of zero-sequence voltages. This is because the magnetic circuit used for conducting zero-sequence flux is mainly linear due to its large air gap. The large zero-sequence currents required to magnetize the high reluctance air path are taken into account in the linear model. Therefore, connecting a saturable transformer outside the three-limb linear model with a flux-current characteristic obtained in positive sequence will produce currents required for magnetization of the iron core.
3) Waveforms of excitation currents when a 1.5 pu voltage is applied at the 2400 V terminals.
Notice on Figure 2 that, because of the core asymmetry, the magnetizing current of phase B is lower than the current obtained for phase A and phase C. See for example on Figure 3 the excitation currents obtained with 1.5 pu voltage.
Demonstration
In order to emphasis the importance of a correct representation of transformer zero-sequence parameters, the transient performance of the Inductance Matrix Type transformer of circuit 2 is compared to the physical model of circuit 1 when a single-phase to ground fault is applied on phase A. A six-cycle fault is applied at 2400 V terminals at t=0.05 sec and cleared at t=0.15 sec.
Before starting simulation, open the Three-Phase Transformer Inductance Matrix Type block menu. Check that the "Core type" parameter is set to "Three-limb or five-limb core". Now, select the "Parameters" tab and check that the positive- and zero-sequence parameters are set according to the table given in the Circuit Description section.
1. Comparison of transient performance of transformer operating in linear region
Start the simulation. Observe on Scope1 and Scope2 respectively for circuit 1 and circuit 2 the following waveforms at 2400 V terminals: three-phase voltages, three-phase currents, three-phase fluxes.
When the fault is applied, the three currents flowing in the 2400 V windings increase from their steady state value (0.20 pu) to 1 pu and contain mainly a zero-sequence component (3 components in phase). During the fault, a DC flux is trapped in phase A, close to its value at fault application (~ -1 pu), whereas the sinusoidal fluxes in phases B and C do not exceed 1.3 pu, Therefore, transformer is operating mainly in the linear region (see Figure 2). Voltage and current waveforms of both models compare well, indicating that the Inductance Matrix Type transformer accurately represents the linear part of the core-type transformer.
2. Comparison of transient performance with saturated transformer
At fault clearing, a flux offset is produced on phase A, driving transformer into saturation. Flux in phase A reaches 1.5 pu, resulting in a strongly non linear current in phase A. Comparison of phase A currents is still acceptable although larger peak values are observed with the transformer of circuit 2. The reason is that the three saturable transformers modelling saturation in positive sequence are connected at winding terminals rather than being connected close to the core, behind the winding resistance and leakage reactances.
3. Simulating the core-type transformer with three single-phase transformers
You will now observe the impact of simulating the core-type transformer by using three single-phase transformers. Open the Three-Phase Transformer Inductance Matrix Type block menu and change the "Core type" parameter to "Three single-phase cores".
Restart simulation and compare waveforms of the two circuits. Notice that during fault the transformer currents of circuit 2 stay unchanged for phases B and C whereas current in phase A falls to zero. This test clearly demonstrates that simulating a Yg/Yg core-type transformer with three single-phase units is unacceptable. The reason is that, in case of three single-phase units, positive-sequence parameters are assumed to be equal to zero-sequence parameters, and the low zero-sequence shunt reactance seen from the transformer input terminals does not exist anymore.
However, if the 600 V winding would be connected in Delta, simulation results would still be acceptable with three single-phase units because the delta connection would now allow circulation of zero-sequence current. To check the effect of using a Delta connection for the 600 V winding, change the Winding 2 connection of the Three-Phase Transformer Inductance Matrix Type to "Deta D1". In the transformer of circuit 1 you have to manually reconnect the secondary in Delta and, in its block menu, change the phase voltage of Winding 2 from 600/sqrt(3) to 600 V. Restart simulation and check that waveforms compare well for both circuits.
In summary, using three single-phase transformers with positive-sequence parameters to simulate a core-type transformer is acceptable only if one of the windings uses a Delta connection.
อธิบายวงจร แบบจำลองแสดงวงจรสองเหมือนกับ kVA 225 คะแนนหม้อแปลงไฟฟ้า 3 เฟส 2400 ที่ V/600V, 60Hz ที่เชื่อมต่ออยู่กับ MVA 1 เครือข่ายพลัง 2400 V เชื่อมต่อ 45 กิโลวัตต์หน้าโหลด (20% ของหม้อแปลงไฟฟ้าระบุด้าน 600 V แต่ละเฟสของหม้อแปลงประกอบด้วยขดลวดที่สองทั้งสองเชื่อมต่อในไวน์กับกลางป่นเล็กน้อย หม้อแปลงในวงจร 1 วงจร 2 ใช้สองแบบที่แตกต่าง: 1) วงจรที่ 1 ใช้แบบจำลองทางกายภาพ (บล็อกสีเหลือง) ที่หลักเรขาคณิตและลักษณะ B H ของเหล็กที่ใช้ในการสร้างหลักเป็นพารามิเตอร์พื้นฐานที่ใช้สำหรับสร้างแบบจำลองคุณสมบัติแม่เหล็กของหม้อแปลง 2) วงจร 2 ใช้บล็อก 3 เฟสหม้อแปลงไฟฟ้า Inductance เมทริกซ์ชนิด (สองขดลวด) (บล็อกสีฟ้า) ในส่วนของรูปแบบเชิงเส้นการสร้างแบบจำลอง ความเข้มจะคือ แบบจำลองในระบบย่อยของ "อิ่มตัว" (บล็อกสี) โดยสามเฟส saturable หม้อแปลงเชื่อมต่อด้านหลักของแบบจำลองของหม้อแปลงแบบเส้นตรง เพื่อลดปริมาณของเหล็ก หม้อแปลงไฟฟ้าหลักใช้การก่อสร้างชนิดหลัก ขั้นตอนที่สามของหม้อแปลงชนิดหลักที่มีควบคู่ขัดกับหม้อแปลง 3 เฟสที่มีสามหน่วยอิสระ เนื่องจากเหล่านี้ couplings, reactances หม้อแปลงในบวก และศูนย์ลำดับค่อนข้างแตกต่างกัน เมื่อแรงดันสามที่ใช้ด้านหลักที่สมดุล ลำดับบวกแรงดัน) fluxes ที่ตั้งค่าในแต่ละขาจะมีความสมดุลยัง พักผ่อนพวกเขาติดอยู่ภายในสนามแม่เหล็กหลัก อย่างไรก็ตาม เมื่อแหล่งแรงดันโหลดไม่สมดุลย์ แรงลำดับศูนย์เพิ่มที่บวกและแรงดันลำดับลบ แรงดันนี้ลำดับศูนย์ผลิตโพเนนต์ฟลักซ์ในระยะในแต่ละขา ในส่วนประกอบลำดับศูนย์ไหลมีการไหลเวียนนอกแกนเหล็ก ถังอากาศและหม้อแปลงไฟฟ้าหรือท่อ เนื่องจากที่สูงไม่เต็มใจ (ต่ำ permeability) ของเส้นทางไหลกลับผ่านอากาศ ที่ศูนย์ลำดับรอบในการกระตุ้นปัจจุบันจะสูงกว่าในลำดับบวก สำหรับรุ่นนี้โดยเฉพาะ ปัจจุบันในการกระตุ้นลำดับศูนย์เกิน 3 ครั้งระบุปัจจุบัน (344%), เมื่อเทียบกับเพียง 2.2% ในลำดับบวก ปัจจุบันในการกระตุ้น ไม่โหลดงานขาด และลัดวงจรความต้านทาน R + j * X (ที่ R =ความต้านทานม้วน X = reactance รั่ว) มีการวัดแบบจำลองทางกายภาพของวงจร 1 ผลลัพธ์จะแสดงอยู่ในตารางด้านล่างดูภายใต้รูปแบบของหม้อแปลงไฟฟ้าของวงจรที่ 1 เพื่อดูวิธีสร้างแบบจำลองวงจรไฟฟ้า และแม่เหล็ก ส่วนไฟฟ้าจะดำเนินการ โดย 6 ควบคุมปัจจุบันแหล่ง (แหล่งหนึ่งต่อขดลวด) แหล่งเหล่านี้ปัจจุบันถูกขับเคลื่อน ด้วยแรง magnetomotive พัฒนา โดยขดลวดแต่ละ ระบบย่อย "หลัก" ใช้คำว่าแม่เหล็ก/ไฟฟ้าจะใช้วงจรแม่เหล็กซึ่งประกอบด้วยองค์ประกอบเหล็ก 7 (แขนขาที่ 3 และ 4 yokes ในสีน้ำเงิน) และ 7 อากาศองค์ประกอบ (สีเขียว) แทนฟลักซ์รั่วไหลสำหรับแต่ละของหก และไหลเส้นทางคืนลำดับศูนย์ ด้านล่างของตัวเลขที่สามแสดงตามลำดับ:1) ลักษณะ B H เหล็ก2 ลักษณะความเข้มในระยะ 3 (ฟลักซ์ใน pu เป็นฟังก์ชันของช่วง magnetizing ปัจจุบันในปู) เมื่อตื่นเต้นของหม้อแปลงในลำดับบวก (สมดุลแรงดัน 3) ลักษณะอิ่มตัวเหล่านี้ได้ในลำดับบวกใช้ในหม้อแปลง saturable เฟสที่สามให้ความเข้มแบบจำลองของหม้อแปลงชนิดหลักใช้ลักษณะลำดับบวกเข้มต้องเข้มรุ่นหลักให้ผลลัพธ์ที่ยอมรับในสถานะของแรงดันลำดับศูนย์ ทั้งนี้เนื่องจากวงจรแม่เหล็กที่ใช้สำหรับดำเนินการศูนย์ลำดับไหลเป็นเส้นส่วนใหญ่เนื่องจากช่องว่างของอากาศขนาดใหญ่ กระแสลำดับศูนย์ขนาดใหญ่ที่ต้อง magnetize เส้นทางอากาศสูงไม่เต็มใจจะนำมาพิจารณาในแบบจำลองเชิงเส้น ดังนั้น การเชื่อมต่อหม้อแปลง saturable นอกแบบเชิงเส้น 3 ขา มีลักษณะไหลปัจจุบันที่ได้รับในลำดับบวกจะสร้างกระแสที่จำเป็นสำหรับ magnetization ของแกนเหล็ก 3) waveforms ของกระแสในการกระตุ้นเมื่อแรงดันปู 1.5 ใช้ในเทอร์มินัล V 2400 สังเกตในรูปที่ 2 เพราะ asymmetry หลัก เฟส B กระแส magnetizing นั้นต่ำกว่าปัจจุบันได้เฟส A และเฟส c ดูตัวอย่างในรูปที่ 3 กระแสในการกระตุ้นได้ ด้วยแรงดันปู 1.5 สาธิต ในการเน้น ความสำคัญของการแสดงถูกต้องของพารามิเตอร์ลำดับศูนย์หม้อแปลงไฟฟ้า ประสิทธิภาพของหม้อแปลงชนิดของเมตริกซ์ Inductance ของวงจร 2 ชั่วคราวถูกเปรียบเทียบกับแบบจำลองทางกายภาพของวงจร 1 เมื่อเฟสกับดินข้อบกพร่องมีใช้ในระยะอ. ใช้บกพร่องรอบหกที่เทอร์มินัล 2400 V ที่ t = 0.05 วินาที และล้างที่ t = 0.15 วินาที Before starting simulation, open the Three-Phase Transformer Inductance Matrix Type block menu. Check that the "Core type" parameter is set to "Three-limb or five-limb core". Now, select the "Parameters" tab and check that the positive- and zero-sequence parameters are set according to the table given in the Circuit Description section. 1. Comparison of transient performance of transformer operating in linear region Start the simulation. Observe on Scope1 and Scope2 respectively for circuit 1 and circuit 2 the following waveforms at 2400 V terminals: three-phase voltages, three-phase currents, three-phase fluxes. When the fault is applied, the three currents flowing in the 2400 V windings increase from their steady state value (0.20 pu) to 1 pu and contain mainly a zero-sequence component (3 components in phase). During the fault, a DC flux is trapped in phase A, close to its value at fault application (~ -1 pu), whereas the sinusoidal fluxes in phases B and C do not exceed 1.3 pu, Therefore, transformer is operating mainly in the linear region (see Figure 2). Voltage and current waveforms of both models compare well, indicating that the Inductance Matrix Type transformer accurately represents the linear part of the core-type transformer. 2. Comparison of transient performance with saturated transformer At fault clearing, a flux offset is produced on phase A, driving transformer into saturation. Flux in phase A reaches 1.5 pu, resulting in a strongly non linear current in phase A. Comparison of phase A currents is still acceptable although larger peak values are observed with the transformer of circuit 2. The reason is that the three saturable transformers modelling saturation in positive sequence are connected at winding terminals rather than being connected close to the core, behind the winding resistance and leakage reactances. 3. Simulating the core-type transformer with three single-phase transformers You will now observe the impact of simulating the core-type transformer by using three single-phase transformers. Open the Three-Phase Transformer Inductance Matrix Type block menu and change the "Core type" parameter to "Three single-phase cores". Restart simulation and compare waveforms of the two circuits. Notice that during fault the transformer currents of circuit 2 stay unchanged for phases B and C whereas current in phase A falls to zero. This test clearly demonstrates that simulating a Yg/Yg core-type transformer with three single-phase units is unacceptable. The reason is that, in case of three single-phase units, positive-sequence parameters are assumed to be equal to zero-sequence parameters, and the low zero-sequence shunt reactance seen from the transformer input terminals does not exist anymore. However, if the 600 V winding would be connected in Delta, simulation results would still be acceptable with three single-phase units because the delta connection would now allow circulation of zero-sequence current. To check the effect of using a Delta connection for the 600 V winding, change the Winding 2 connection of the Three-Phase Transformer Inductance Matrix Type to "Deta D1". In the transformer of circuit 1 you have to manually reconnect the secondary in Delta and, in its block menu, change the phase voltage of Winding 2 from 600/sqrt(3) to 600 V. Restart simulation and check that waveforms compare well for both circuits. In summary, using three single-phase transformers with positive-sequence parameters to simulate a core-type transformer is acceptable only if one of the windings uses a Delta connection.
การแปล กรุณารอสักครู่..