Nowadays, aerial robots have very limited cost can be equipped with a sensing suite that may contain visible light cameras, thermal imaging or even Light Detection and more. and targets of interest is explore in possibly cluttered, challenging and previously unknown environments.
At the same time, Modern AR devices are miniaturized, low–cost systems which provide live, high–quality direct views of the real– world environment fused and augmented with computer– generated sensory input such as sound, video, graphics, GPS data and more.
Market forecasts indicate that within the next few years, AR devices will become prominent among computer users and will be employed for a variety of use– cases including gaming, social interaction and more.
Within this work they investigate the arising potential when automated robotic inspection is combined with augmented reality technologies and through that the path planning capabilities and cognitive understanding of the robot is shared with the human, while at the same time human intelligence empowers the robot reactive path planning through head motion–based intuitive teleoperation.
The problem of Augmented Reality–enhanced structural inspection path planning is, within the scope of this work such as a bounded environment that may contain obstacle regions.
The structural inspection planner is utilized to derive the initial inspection path, while during the operation a human is using the head–mounted AR–interface to keep track of the camera data collected by the robot as well as of the progress of the online 3D reconstruction.
Fig.5 path computed by the robot as well as the human operator commands provided based on the data of the AR–interface and the tracked head motion which is then mapped to lateral, vertical and yaw deviations of the reference trajectory of the robot.
areas of interest and other important features. The method employs a previously proposed structural inspection planner which derives the initial inspection trajectory given any prior knowledge of the environment. Live feed of the stereo camera frames combined with the real–time 3D reconstruction of the environment is provided to the human operator via the Augmented Reality interface.
ปัจจุบันหุ่นยนต์ทางอากาศมีต้นทุนมาก จำกัด สามารถติดตั้งกับชุดข้อมูลที่อาจจะมีกล้องตรวจจับความร้อนหรือแสงที่มองเห็นภาพได้สว่างมากขึ้น และเป้าหมายของความสนใจ สำรวจในอาจไม่ท้าทายและสภาพแวดล้อมที่ไม่รู้จักก่อนหน้านี้ในเวลาเดียวกัน , อุปกรณ์ AR ที่ทันสมัยขนาดเล็กต่ำ–ต้นทุนระบบที่ให้อยู่สูง และคุณภาพโดยตรงในมุมมองของโลกและสภาพแวดล้อมจริง–เติมผสมกับ–คอมพิวเตอร์สร้างความรู้สึกที่เข้ามาเช่นเสียง , วิดีโอ , กราฟิก , GPS และข้อมูลเพิ่มเติมการคาดการณ์ตลาด พบว่า ภายในไม่กี่ปีถัดไป , อุปกรณ์ AR จะกลายเป็นโดดเด่นในหมู่ผู้ใช้คอมพิวเตอร์และจะใช้ในความหลากหลายของการใช้งานและกรณีรวมถึงการเล่นเกม , ปฏิสัมพันธ์ทางสังคมและเพิ่มเติมภายในงานนี้ได้ศึกษาศักยภาพการตรวจสอบอัตโนมัติที่เกิดขึ้นเมื่อหุ่นยนต์รวมกับความเป็นจริงเติมเทคโนโลยีและผ่านการวางแผนทางความสามารถและความเข้าใจทางปัญญาของหุ่นยนต์ร่วมกันกับมนุษย์ ในขณะเดียวกันมนุษย์ช่วยให้หุ่นยนต์เป็นเส้นทางการวางแผนผ่านหัวเคลื่อนไหว–ง่ายระยะไกลที่ใช้ปัญหาของความเป็นจริง Augmented –ปรับปรุงโครงสร้างการวางแผนเส้นทางการตรวจสอบภายในขอบเขตของงานนี้ เช่น จำกัดสิ่งแวดล้อมที่อาจมีอุปสรรคภูมิภาคการวางแผนการตรวจสอบโครงสร้างถูกใช้เพื่อสร้างเส้นทางการตรวจสอบเบื้องต้น ในขณะที่ในระหว่างการเป็นมนุษย์คือการใช้หัว–ติดตั้ง AR ติดต่อและติดตามกล้องข้อมูลหุ่นยนต์ ตลอดจนความคืบหน้าของออนไลน์ซ่อมแซมfig.5 เส้นทางที่คำนวณโดยหุ่นยนต์ ตลอดจนผู้ประกอบการคนสั่งให้ตามข้อมูลของ AR - ติดต่อและติดตามการเคลื่อนหัวพิมพ์ซึ่งเป็นแล้วแมปไปยังด้านข้างตามแนวตั้งและ Yaw เบี่ยงเบนของอ้างอิงการเคลื่อนที่ของหุ่นยนต์พื้นที่ที่น่าสนใจและคุณสมบัติที่สำคัญอื่น ๆ วิธีการที่ใช้ก่อนหน้านี้เสนอโครงสร้างการตรวจสอบแผนซึ่งได้มาเริ่มต้นการตรวจสอบวิถีกระสุนให้มีความรู้ก่อนของสภาพแวดล้อม ถ่ายทอดสดจากเฟรมกล้องสเตอริโอรวมกับเวลาจริง 3D และการฟื้นฟูสิ่งแวดล้อมให้กับผู้ประกอบการของมนุษย์ผ่านทางความเป็นจริง Augmented อินเตอร์เฟซ
การแปล กรุณารอสักครู่..
