Since the nutrition value of rice is diminished during rice processing, technology that can preserve and sustain functional compounds is necessary. In this study, supercritical carbon dioxide (SC-CO2) extraction was optimized for operational conditions (time, temperature, pressure and modifier) to extract vitamin E, γ-oryzanols and xanthophylls from rice bran. The simultaneous quantification of the compounds was developed using high-performance liquid chromatography with diode array and fluorescence detectors. Central composite design and respond surface methodology were applied to achieve optimum extraction conditions. The optimized conditions were 60 min, 43 °C, 5420 psi with 10% ethanol as a modifier. Pigmented rice bran extracts contained greater amounts of functional phytochemicals than non-pigmented rice bran extracts (0.68, 1410, and non-detectable μg/g compared with 16.65, 2480, and 0.10 μg/g of vitamin E, γ-oryzanols and xanthophylls in pigmented and non-pigmented ones, respectively). SC-CO2 extraction with modifier would be promising for preparation of phytochemical essences for therapeutic purpose.