So far, there are no robust enzymatic methods for the production of chitosan that could provide an alternative to the current chemical production methods. In principle, chitin deacetylases could be used to produce chitosan [109–113]. These enzymes hydrolyze the N-acetyl linkage and convert GlcNAc to GlcN. However, the insolubility and crystallinity of the chitin substrate forms a major hurdle for this approach. Chitin deacetylases could also be used to modify the N-acetylation pattern of CHOS, but this route has so far remained unexplored.
Although there are routes for chemical conversion of chitosan to CHOS [7] (see below), even CHOS with specific DP and PA, enzyme technology probably is the most promising approach. The specificity of chitosan-degrading enzymes has traditionally been studied by extensive enzymatic degradation of the polymer and subsequent isolation and characterization of the resulting oligomers. More recently, studies with chitinases have shown that the kinetics of the degradation reactions is such that product profiles change considerably during the hydrolysis reaction. Because the enzymes have very different binding affinities for different sequences on the substrate, reactions show multiphasic kinetics, and the product mixtures obtained at the end of each of these phases differ considerably. Another important issue is processivity; degradation processes may change during a reaction, from initial mainly processive hydrolysis of polymeric chains to non-processive hydrolysis of intermediate products as the polymeric material becomes exhausted. All in all, this means that the choice of the starting chitosan, the choice of the enzyme, and the choice of the processing time all affect the outcome of the enzymatic conversion process and that there are ample opportunities to manipulate this outcome [114]. This is illustrated by several studies on enzymatic degradation of chitosans [56,60,107,114–117], some of which are discussed in detail below. Structures of the enzymes discussed below are shown in Figure 1, whereas Table 1 shows some key properties.