The highly ordered crystalline structure of ice changes the apparent properties of the polarized light, and the ice appears bright. Glass and water, lacking that highly ordered structure, both appear dark.
The amorphous morphology of glass leads to very different properties from crystalline solids. This is illustrated in the heating process where the application of heat to glass turns it from a brittle solid-like material at room temperature to a viscous liquid, as discussed later in more detail under Thermal Properties of Polymers. In contrast, the application of heat to ice turns it from solid to liquid. Crystalline melting leads to striking changes in optical properties during the melting process when observed through crossed polarizers. This is illustrated in the following movie of the melting of an organic crystalline material. Note that while the temperatures are not recorded, the entire process occurs over a very narrow temperature range.
The highly ordered crystalline structure of ice changes the apparent properties of the polarized light, and the ice appears bright. Glass and water, lacking that highly ordered structure, both appear dark.The amorphous morphology of glass leads to very different properties from crystalline solids. This is illustrated in the heating process where the application of heat to glass turns it from a brittle solid-like material at room temperature to a viscous liquid, as discussed later in more detail under Thermal Properties of Polymers. In contrast, the application of heat to ice turns it from solid to liquid. Crystalline melting leads to striking changes in optical properties during the melting process when observed through crossed polarizers. This is illustrated in the following movie of the melting of an organic crystalline material. Note that while the temperatures are not recorded, the entire process occurs over a very narrow temperature range.
การแปล กรุณารอสักครู่..
