For practical purposes, the raw putative induced mutants may be considered as those “otherwise unprepossessing and unpromising plants” that must be put through the paces of selections and hybridizations in order to elevate them to the stable and relatively “clean” materials that may be used as parents in breeding programs. The e-learning course [124] that was developed by the Global Partnership Initiative for Plant Breeding Capacity Building is a very useful tool for assisting germplasm curators (with in-depth knowledge and appreciation of the variations in germplasm collections) and the plant breeders (who work to incorporate the most desirable new traits into novel varieties) institutionalize this paradigm for crop improvement. It includes modules on germplasm management, classical plant breeding themes and molecular genetics techniques and therefore imparts skills that lend themselves to managing large mutant populations and integrating their novel traits into breeding lines. Pre-breeding, therefore, is indeed a most valuable appendage to all induced mutation programs as resources could be dedicated solely to transforming these “raw” induced mutants with all the deleterious alleles to “acceptable” parental materials for breeding programs. It is safe to assume that as pre-breeding becomes an established component of crop improvement, plant breeders will be under less pressure to account for the time invested in cleaning up induced mutants for use as parents in hybridization. Induced mutation projects should therefore include a pre-breeding component as means to forge the bridge to plant breeding.