however, the essential mechanism of the oscilla- tion remains unclear. One of the most significant reasons for this is the lack of information on tur- bulent premixed flame in a high-pressure, high- temperature environment, although a large num- ber of studies on turbulent premixed flames have been performed [1,2]. Combustion oscillation gen- erates high-frequency pressure change up to sev- eral hundred hertz and a change in turbulence characteristics. Therefore, research on the effects of the pressure and temperature of turbulent pre- mixed flames and burning velocity is important for elucidating the oscillation mechanism even for the steady condition of pressure.
The authors of this paper have previously per- formed experimental studies on high-pressure tur- bulent premixed flames using a burner stabilized flame in a high-pressure chamber, keeping the chamber pressure constant, and succeeded in mea- suring turbulent burning velocity and the scale of the smallest wrinkling of the turbulent flame front [3,6]. Moreover, experiments have also been per- formed to measure the scale of wrinkling for a high-temperature premixture at high pressure, and a scale relation model between the smallest scale of flame wrinkling, turbulence length scale, and intrinsic flame instability has been proposed [7]. The aim of the present study was to extend further the measurement of turbulent burning velocity at high pressure and high temperature.
In our previous measurement of turbulent burning velocity, we used an angle method for the mean flame cone determined by laser tomog- raphy using fine seeding particles and a laser sheet [3,5]. However, in the case of turbulent premixed flames, the flame region, i.e., mean flame brush, has a certain thickness, and this thickness varies along the flame cone as is reviewed by Lipatnikov and Chomiak [8]. In this case, a more suitable way to determine the turbulent burning velocity is to use the turbulent flame front determined by employing the mean progress variable, Æcæ. There- fore, measurement of turbulent burning velocity at high-pressure and high-temperature in Æcæ space is the main purpose of this study.
Another purpose of this study was to investi- gate the relationship between the smallest scale of flame wrinkling and turbulent burning velocity. When the flame structure is in the flamelet regime, turbulent burning velocity is basically determined by the total flame area and local laminar burning velocity, meaning that the flame wrinkling scale plays an important role in the determination of burning velocity. In our previous study [7], the above-stated scale relation based on the turbu- lence Reynolds number, Rk, which is based on Taylor microscale, kg, exists at high-pressure but is not well confirmed at ordinary pressure. This is due to the limited range of Rk when a small- scale burner is used. To confirm the general role of Rk for turbulent premixed flames, a large-scale
อย่างไรก็ตาม กลไกสำคัญของ oscilla - tion ยังคงไม่ชัดเจน หนึ่งในเหตุผลที่สำคัญที่สุดนี้คือ การขาดข้อมูลเกี่ยวกับเธอ - bulent ผสมเปลวไฟในสภาพแวดล้อมที่อุณหภูมิสูงแรงดันสูง แม้ว่าขนาดใหญ่น้ำ - เบอร์ของการศึกษาปั่นป่วนในเปลวไฟได้ทำการผสม [ 1 , 2 ]นี้การเผาไหม้ Gen - erates ความถี่สูงแปลงแรงดันขึ้น sev - ที่ 100 เฮิรตซ์และการเปลี่ยนแปลงลักษณะการไหลทะลัก ดังนั้นการศึกษาผลของความดันและอุณหภูมิของเปลวไฟเผาป่วนก่อนผสม และ ความเร็วเป็นสิ่งสำคัญสำหรับการศึกษากลไกการสั่นแม้สภาพมั่นคง
ของความดันผู้เขียนของบทความนี้เคยมีต่อ - รูปแบบการศึกษาในเธอ - แรงดันสูง bulent ผสมโดยใช้เตาเปลวไฟคงที่เปลวไฟในห้องที่มีความดันสูง รักษาห้องความดันคงที่และประสบความสำเร็จในการไฟฟ้านครหลวง - ระหว่างป่วนเผาความเร็วและขนาดของเล็กย่นของป่วนเปลวไฟด้านหน้า [ 3 , 6 ] นอกจากนี้การทดลองมีขึ้นต่อ - วัดระดับของย่นสำหรับ premixture อุณหภูมิสูงที่ความดันสูงและมาตราส่วนโมเดลความสัมพันธ์ระหว่างขนาดที่เล็กที่สุดของเปลวไฟ wrinkling ที่มีความยาวขนาดและความไม่แน่นอนที่ได้รับการนำเสนอภายในเปลวไฟ [ 7 ]จุดมุ่งหมายของการศึกษาคือการขยายเพิ่มเติมการวัดความเร็วการเผาไหม้ป่วนที่ความดันสูงและอุณหภูมิสูง ในการวัดความเร็ว
คราวก่อนเผาป่วน เราใช้มุมวิธีสำหรับหมายถึงเปลวไฟกรวยกำหนดโดยเลเซอร์ tomog - raphy ใช้ดีเพาะอนุภาคและเลเซอร์แผ่น [ จำนวน ] อย่างไรก็ตาม ในกรณีของป่วน ผสม เปลวไฟ เปลวไฟ ภูมิภาคคือหมายถึงแปรงเปลวไฟ มีความหนา บาง และความหนาแตกต่างกันตามกรวยเป็นเปลวไฟสุดท้ายโดย lipatnikov และ chomiak [ 8 ] ในกรณีนี้ เป็นวิธีที่เหมาะสมเพื่อกำหนดความเร็วการเผาไหม้ป่วนเพื่อใช้ป่วนเปลวไฟหน้ากำหนดโดยการหมายถึงความก้าวหน้าตัวแปร กู้ซีæ . - ก่อน ,การวัดความดันสูงและอุณหภูมิสูงที่ป่วนเผาความเร็วในพื้นที่กู้ซีæเป็นวัตถุประสงค์หลักของการศึกษานี้
อื่น การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อ investi - ประตูความสัมพันธ์ระหว่างขนาดที่เล็กที่สุดของเปลวไฟ wrinkling และความเร็วการเผาไหม้ป่วน เมื่อโครงสร้างเปลวไฟใน flamelet ระบอบการปกครองความเร็วเขียนป่วนโดยทั่วไปโดยกำหนดพื้นที่และความเร็วการเผาไหม้เปลวไฟทั้งหมดแบบท้องถิ่น หมายถึง เปลวไฟย่นขนาดมีบทบาทสำคัญในการกำหนดความเร็วของการเผาไหม้ ในการศึกษาก่อนหน้า [ 7 ] , ที่ระบุไว้ข้างต้นมีความสัมพันธ์แบบตาม turbu - lence Reynolds Number , RK ซึ่งจะขึ้นอยู่กับระดับจุลภาคกก. , เทย์เลอร์ ,อยู่ที่แรงดันสูง แต่จะไม่ยืนยันที่ความดันปกติ เนื่องจากมีช่วง จำกัด ของ RK เมื่อเตาขนาดเล็ก - ใช้ เพื่อยืนยันทั่วไปบทบาทของ RK เพื่อป่วนผสมเปลวไฟขนาดใหญ่
การแปล กรุณารอสักครู่..
