Abstract
Batch experiments were performed to investigate the co-fermentation of palm oil empty fruit bunch (EFB) and pig manure (PM) at various PM mixing ratios (%PM) and flushing intervals (FI) over 60-day fermentation time (FT) using anaerobic leach bed reactors. Addition of PM promoted hydrolysis yield (ηh) and acidification yield (ηa) due to the more degradable and soluble nature of PM that gave out organic acids, and nutrients it supplemented. The highest ηh and ηa found were 27.9 ± 0.3% and 51.7 ± 2.6%, respectively. Longer FI that delayed bed flushing prolonged the dry condition where hydrolytic reaction could be enhanced. The developed multiple regression model with R2 = 0.87 and p < 0.0001 suggested a good fit to the data and able to describe the interactive relationship of the parameters on total volatile fatty acids (VFA) production. The longer chain acids, i.e. propionic (C3), butyric (C4), and valeric (C5) acids, were found in higher concentrations with longer FI and higher pig manure mixing ratios. The mixing of an easier biodegradable pig manure as co-substrate could help induce higher degree of fermentation of the recalcitrant EFB.
Abstract
Batch experiments were performed to investigate the co-fermentation of palm oil empty fruit bunch (EFB) and pig manure (PM) at various PM mixing ratios (%PM) and flushing intervals (FI) over 60-day fermentation time (FT) using anaerobic leach bed reactors. Addition of PM promoted hydrolysis yield (ηh) and acidification yield (ηa) due to the more degradable and soluble nature of PM that gave out organic acids, and nutrients it supplemented. The highest ηh and ηa found were 27.9 ± 0.3% and 51.7 ± 2.6%, respectively. Longer FI that delayed bed flushing prolonged the dry condition where hydrolytic reaction could be enhanced. The developed multiple regression model with R2 = 0.87 and p < 0.0001 suggested a good fit to the data and able to describe the interactive relationship of the parameters on total volatile fatty acids (VFA) production. The longer chain acids, i.e. propionic (C3), butyric (C4), and valeric (C5) acids, were found in higher concentrations with longer FI and higher pig manure mixing ratios. The mixing of an easier biodegradable pig manure as co-substrate could help induce higher degree of fermentation of the recalcitrant EFB.
การแปล กรุณารอสักครู่..