Abstract
Background
Construction of electrochemical impedance sensors by the self-assembly technique has become a promising strategy for the ‘label-free’ detection of protein-ligand interactions. However, previous impedance sensors are devoid of an inherent electrochemical signal, which limits the standardization of the sensors for protein recognition in a reproducible manner.
Results
We designed and synthesized an anthraquinonyl glycoside (AG) where the anthraquinone (AQ) moiety can bind to the surface of a graphene-based working electrode while the glycoside serving as a ligand for lectin. By measuring the inherent voltammetric signal of AQ, the glycosides decorated on the working electrode could be simply quantified to obtain electrodes with a unified signal window. Subsequently, impedance analysis showed that the ‘standardized’ electrodes gave a reproducible electrochemical response to a selective lectin with no signal variation in the presence of unselective proteins.
Conclusion
Anthraquinone-modified ligands could be used to facilitate the standardization of electrochemical impedance sensors for the reproducible, selective analysis of ligand-protein interactions.
Keywords:
Anthraquinone; Graphene; Glycoside; Lectin; Electrochemistry; EIS; Standardization
Background
Sugars distributed on the surface of mammalian cells are key informational molecules for cell-cell recognition and adhesion through the interaction with lectins (sugar recognition proteins). Unquestionably the ability to probe sugar-lectin recognitions may boost the advancement of the glycomics. However, conventional approaches for analysis of these interactions mainly rely on immunofluorescence techniques, which are time-consuming and expensive. As a result, a number of ‘label-free’ methods for the quick and economic detection of lectins have been developed [1]-[5].
Among the various methods introduced, electrochemistry, because of its ease in manipulation and good sensitivity, has been widely employed for lectin analyses [3],[5],[6]. In addition, electrochemical techniques generally do not require heavy facilities for signal output. Electrochemical impedance spectroscopy (EIS) can sensitively interpret the resistive ability of an interfacial species, which has been broadly applied in the study of corrosion science as well as development of label-free sensors. EIS sensors for lectins, based on the gold-alkenethiol self-assembly technique, have provided promising means for the concise, label-free detection of lectins and live cells that express a glyco-receptor [7]-[15].
Nevertheless, while the use of gold as working electrode may increase the detection cost, the standardization of electrodes remains difficult due to the lack of an inherent signal ‘reporter’. To address these issues, we report here the design and synthesis of an anthraquinonyl glycoside (AG) in which the anthraquinone moiety can simultaneously serve as a ‘binder’ for a graphene-based electrode and a reporter that produces an electrochemical signal to standardize the sensor fabrication. By using voltammetry, the AGs decorated on the graphene-based electrodes can be easily quantified, thereby facilitating the standardization of the electrodes to produce a unified signal window for lectin detection. Subsequently, EIS analyses showed that the standardized electrodes gave a highly reproducible electrochemical response to a selective lectin, suggesting the promise of using anthraquinone-modified glyco-ligands for the impedance detection of lectins.
Abstract
Background
Construction of electrochemical impedance sensors by the self-assembly technique has become a promising strategy for the ‘label-free’ detection of protein-ligand interactions. However, previous impedance sensors are devoid of an inherent electrochemical signal, which limits the standardization of the sensors for protein recognition in a reproducible manner.
Results
We designed and synthesized an anthraquinonyl glycoside (AG) where the anthraquinone (AQ) moiety can bind to the surface of a graphene-based working electrode while the glycoside serving as a ligand for lectin. By measuring the inherent voltammetric signal of AQ, the glycosides decorated on the working electrode could be simply quantified to obtain electrodes with a unified signal window. Subsequently, impedance analysis showed that the ‘standardized’ electrodes gave a reproducible electrochemical response to a selective lectin with no signal variation in the presence of unselective proteins.
Conclusion
Anthraquinone-modified ligands could be used to facilitate the standardization of electrochemical impedance sensors for the reproducible, selective analysis of ligand-protein interactions.
Keywords:
Anthraquinone; Graphene; Glycoside; Lectin; Electrochemistry; EIS; Standardization
Background
Sugars distributed on the surface of mammalian cells are key informational molecules for cell-cell recognition and adhesion through the interaction with lectins (sugar recognition proteins). Unquestionably the ability to probe sugar-lectin recognitions may boost the advancement of the glycomics. However, conventional approaches for analysis of these interactions mainly rely on immunofluorescence techniques, which are time-consuming and expensive. As a result, a number of ‘label-free’ methods for the quick and economic detection of lectins have been developed [1]-[5].
Among the various methods introduced, electrochemistry, because of its ease in manipulation and good sensitivity, has been widely employed for lectin analyses [3],[5],[6]. In addition, electrochemical techniques generally do not require heavy facilities for signal output. Electrochemical impedance spectroscopy (EIS) can sensitively interpret the resistive ability of an interfacial species, which has been broadly applied in the study of corrosion science as well as development of label-free sensors. EIS sensors for lectins, based on the gold-alkenethiol self-assembly technique, have provided promising means for the concise, label-free detection of lectins and live cells that express a glyco-receptor [7]-[15].
Nevertheless, while the use of gold as working electrode may increase the detection cost, the standardization of electrodes remains difficult due to the lack of an inherent signal ‘reporter’. To address these issues, we report here the design and synthesis of an anthraquinonyl glycoside (AG) in which the anthraquinone moiety can simultaneously serve as a ‘binder’ for a graphene-based electrode and a reporter that produces an electrochemical signal to standardize the sensor fabrication. By using voltammetry, the AGs decorated on the graphene-based electrodes can be easily quantified, thereby facilitating the standardization of the electrodes to produce a unified signal window for lectin detection. Subsequently, EIS analyses showed that the standardized electrodes gave a highly reproducible electrochemical response to a selective lectin, suggesting the promise of using anthraquinone-modified glyco-ligands for the impedance detection of lectins.
การแปล กรุณารอสักครู่..

Abstract
Background
Construction of electrochemical impedance sensors by the self-assembly technique has become a promising strategy for the ‘label-free’ detection of protein-ligand interactions. However, previous impedance sensors are devoid of an inherent electrochemical signal, which limits the standardization of the sensors for protein recognition in a reproducible manner.
Results
We designed and synthesized an anthraquinonyl glycoside (AG) where the anthraquinone (AQ) moiety can bind to the surface of a graphene-based working electrode while the glycoside serving as a ligand for lectin. By measuring the inherent voltammetric signal of AQ, the glycosides decorated on the working electrode could be simply quantified to obtain electrodes with a unified signal window. Subsequently, impedance analysis showed that the ‘standardized’ electrodes gave a reproducible electrochemical response to a selective lectin with no signal variation in the presence of unselective proteins.
Conclusion
Anthraquinone-modified ligands could be used to facilitate the standardization of electrochemical impedance sensors for the reproducible, selective analysis of ligand-protein interactions.
Keywords:
Anthraquinone; Graphene; Glycoside; Lectin; Electrochemistry; EIS; Standardization
Background
Sugars distributed on the surface of mammalian cells are key informational molecules for cell-cell recognition and adhesion through the interaction with lectins (sugar recognition proteins). Unquestionably the ability to probe sugar-lectin recognitions may boost the advancement of the glycomics. However, conventional approaches for analysis of these interactions mainly rely on immunofluorescence techniques, which are time-consuming and expensive. As a result, a number of ‘label-free’ methods for the quick and economic detection of lectins have been developed [1]-[5].
Among the various methods introduced, electrochemistry, because of its ease in manipulation and good sensitivity, has been widely employed for lectin analyses [3],[5],[6]. In addition, electrochemical techniques generally do not require heavy facilities for signal output. Electrochemical impedance spectroscopy (EIS) can sensitively interpret the resistive ability of an interfacial species, which has been broadly applied in the study of corrosion science as well as development of label-free sensors. EIS sensors for lectins, based on the gold-alkenethiol self-assembly technique, have provided promising means for the concise, label-free detection of lectins and live cells that express a glyco-receptor [7]-[15].
Nevertheless, while the use of gold as working electrode may increase the detection cost, the standardization of electrodes remains difficult due to the lack of an inherent signal ‘reporter’. To address these issues, we report here the design and synthesis of an anthraquinonyl glycoside (AG) in which the anthraquinone moiety can simultaneously serve as a ‘binder’ for a graphene-based electrode and a reporter that produces an electrochemical signal to standardize the sensor fabrication. By using voltammetry, the AGs decorated on the graphene-based electrodes can be easily quantified, thereby facilitating the standardization of the electrodes to produce a unified signal window for lectin detection. Subsequently, EIS analyses showed that the standardized electrodes gave a highly reproducible electrochemical response to a selective lectin, suggesting the promise of using anthraquinone-modified glyco-ligands for the impedance detection of lectins.
การแปล กรุณารอสักครู่..

พื้นหลังนามธรรม
สร้างเซนเซอร์ทางเคมีไฟฟ้าเทคนิคอิมพีแดนซ์ โดยตัวเองได้กลายเป็นกลยุทธ์หลัก ' ' ของระบบตรวจจับฉลากฟรีปฏิสัมพันธ์ของโปรตีน อย่างไรก็ตาม ก่อนหน้านี้มีเซ็นเซอร์แบบไร้สัญญาณไฟฟ้าเคมีโดยธรรมชาติ ซึ่งกำหนดมาตรฐานของเซ็นเซอร์รับรู้โปรตีนในลักษณะผล
) .เราออกแบบและสังเคราะห์เป็น anthraquinonyl ไกลโคไซด์ ( AG ) ที่แอนทราควิโนน ( AQ ) แน่นอนสามารถผูกกับพื้นผิวของกราฟีน ที่ใช้งานไฟฟ้าในขณะที่ Glycoside บริการเป็นลิแกนด์สำหรับมาก โดยการวัดสัญญาณมากโดยธรรมชาติของ AQ , ไกลโคไซด์ประดับบนขั้วไฟฟ้าทำงานอาจจะเพียงแค่ quantified เพื่อให้ได้ไฟฟ้ารวมสัญญาณกับหน้าต่าง Subsequently, impedance analysis showed that the ‘standardized’ electrodes gave a reproducible electrochemical response to a selective lectin with no signal variation in the presence of unselective proteins.
Conclusion
Anthraquinone-modified ligands could be used to facilitate the standardization of electrochemical impedance sensors for the reproducible,การวิเคราะห์การปฏิสัมพันธ์ของสารโปรตีน
.
คำสำคัญ : กราฟีนี้แอนทราควิโนน ; ; ; เลคติน ; เคมีไฟฟ้า ; สนับสนุน ; มาตรฐาน
พื้นหลังน้ำตาลกระจายบนผิวเซลล์ของสัตว์เลี้ยงลูกด้วยนม คีย์ข้อมูล สำหรับการยึดเกาะโมเลกุล astrocytoma และผ่านการปฏิสัมพันธ์กับเลคติน ( น้ำตาลจำโปรตีน )เด็ด ความสามารถในการตรวจสอบความสําเร็จตินน้ำตาล อาจเพิ่มความก้าวหน้าของ glycomics . อย่างไรก็ตาม แนวทางทั่วไปสำหรับการวิเคราะห์ปฏิสัมพันธ์เหล่านี้ส่วนใหญ่ต้องอาศัยเทคนิควิธี ซึ่งจะใช้เวลานานและมีราคาแพง เป็นผลให้จำนวนของป้ายชื่อฟรี ' วิธีการที่รวดเร็วและเศรษฐกิจการตรวจหาได้รับการพัฒนา [ 1 ] - [ 5 ] .
Among the various methods introduced, electrochemistry, because of its ease in manipulation and good sensitivity, has been widely employed for lectin analyses [3],[5],[6]. In addition, electrochemical techniques generally do not require heavy facilities for signal output. Electrochemical impedance spectroscopy (EIS) can sensitively interpret the resistive ability of an interfacial species,ซึ่งได้ถูกประยุกต์ใช้ในวงกว้างในการศึกษาวิทยาศาสตร์การกัดกร่อนรวมทั้งการพัฒนาฉลากเซ็นเซอร์ฟรี บูรณาการเซ็นเซอร์ตรวจหาตาม alkenethiol ทองต่างๆเทคนิค ได้ให้สัญญาว่ากระชับ ป้ายชื่อฟรีการตรวจหาเลคตินและมีชีวิตเซลล์ที่แสดงไกลโคตัวรับ [ 7 ] - [ 15 ] .
อย่างไรก็ตามในขณะที่ใช้ทองเป็นขั้วไฟฟ้าทำงาน อาจเพิ่มต้นทุนการตรวจสอบมาตรฐานของขั้วไฟฟ้ายังคงยากเนื่องจากการขาดโดยธรรมชาติสัญญาณ ' นักข่าว ' เพื่อแก้ไขปัญหาเหล่านี้เรารายงานที่นี่การออกแบบและการสังเคราะห์ของ anthraquinonyl ไกลโคไซด์ ( AG ) ซึ่งแอนทราควิโนนแน่นอนพร้อมกันสามารถใช้เป็น ' ประสาน ' กราฟีนตามขั้วไฟฟ้า และนักข่าวที่ผลิตสัญญาณทางเคมีไฟฟ้าเพื่อวางมาตรฐานเซ็นเซอร์ผลิต โดยการใช้แสงยูวี , AGS ประดับบนกราฟีนสามารถ quantified ใช้ขั้วไฟฟ้า , thereby facilitating the standardization of the electrodes to produce a unified signal window for lectin detection. Subsequently, EIS analyses showed that the standardized electrodes gave a highly reproducible electrochemical response to a selective lectin, suggesting the promise of using anthraquinone-modified glyco-ligands for the impedance detection of lectins.
การแปล กรุณารอสักครู่..
