Researchers at Washington University in St. Louis (WU) say they’ve found a way to effectively destroy the HIV virus using a toxin found in bee venom.The study, published Thursday in the journal Antiviral Therapy, states that the technique not only destroys the virus that causes AIDS, but also leaves surrounding cells intact.Researchers say they hope the nanoparticle technology could be incorporated into a vaginal gel to prevent the spread of HIV in areas with high rates of infection.
How Nanoparticles & Bee Venom Destroy HIV
Microscopic nanoparticles have unique and exciting properties. In biomedicine, they are used to transport important proteins throughout the body. Bee venom’s principle toxin is melittin, a small protein. Researchers used nanoparticles to distribute melittin in laboratory studies.
Similar to the way a bee injects its venom into your skin using its stinger, the toxin melittin is able to poke holes in the protective coating of HIV and other viruses.
“We are attacking an inherent physical property of HIV,” Dr. Joshua L. Hood, a research instructor in medicine at WU, said in a press release. “Theoretically, there isn’t any way for the virus to adapt to that. The virus has to have a protective coat, a double-layered membrane that covers the virus.”
When researchers loaded the toxin into nanoparticles, they found that it didn’t harm normal cells because of a protective bumper added to the nanoparticle’s surface. Because HIV cells are smaller than regular cells, they slide between the bumpers while leaving healthy, normal cells intact.
Most current HIV treatments focus on inhibiting HIV’s ability to replicate, but do nothing to stop the initial infection. However, researchers say that because the venom-laced nanoparticles attack a crucial part of HIV’s structure, they can kill before the virus has a chance to infect a person.
How Bee Venom Nanoparticles Can Help Stop the Spread of HIV
Researchers say these bee venom nanoparticles could be used in a vaginal gel to help prevent the spread of HIV in developing countries, such as parts of Africa with a high HIV rate. They could also be used by people who want HIV protection, but not contraception.
“We also are looking at this for couples where only one of the partners has HIV, and they want to have a baby,” Hood said. “These particles by themselves are actually very safe for sperm, for the same reason they are safe for vaginal cells.”
Beyond preventive measures, Hood sees the potential for treating existing HIV infections. He theorizes that the nanoparticles could be injected into a person’s blood in order to clear HIV cells from the bloodstream.
The technology could also be used to combat other infectious diseases, such as hepatitis B and C, because the viruses share a similar protective membrane to the HIV virus.
Dr. George Krucik, Healthline’s director of clinical content, said that while nanoparticle research is not new, much more research will be required before these results can be put to use in people.
“This delivery technology holds out the promise of destroying circulating viruses that have not entered a cell, so in theory they could prevent a virus from infecting a cell,” he said. “These laboratory experiments are known as proof of concept studies, which demonstrate the feasibility of the technology. The use of this technology in humans has yet to be explored and will require years of study and clinical trials to see if they are effective in real live people.”
Bee venom is also being studied for use in pain relief medications and anti-aging creams.
Nanoparticles carrying a toxin found in bee venom can destroy human immunodeficiency virus (HIV) while leaving surrounding cells unharmed, researchers atWashington University School of Medicine in St. Louis have shown. The finding is an important step toward developing a vaginal gel that may prevent the spread of HIV, the virus that causes AIDS.
“Our hope is that in places where HIV is running rampant, people could use this gel as a preventive measure to stop the initial infection,” says Joshua L. Hood, MD, PhD, a research instructor in medicine.The study appears in the current issue of Antiviral Therapy.
Bee venom contains a potent toxin called melittin that can poke holes in the protective envelope that surrounds HIV, and other viruses. Large amounts of free melittin can cause a lot of damage. Indeed, in addition to anti-viral therapy, the paper’s senior author, Samuel A. Wickline, MD, the J. Russell Hornsby Professor of Biomedical Sciences, has shown melittin-loaded nanoparticles to be effective in killing tumor cells.
The new study shows that melittin loaded onto these nanoparticles does not harm normal cells. That’s because Hood added protective bumpers to the nanoparticle surface. When the nanoparticles come into contact with normal cells, which are much larger in size, the particles simply bounce off. HIV, on the other hand, is even smaller than the nanoparticle, so HIV fits between the bumpers and makes contact with the surface of the nanoparticle, where the bee toxin awaits.
“Melittin on the nanoparticles fuses with the viral envelope,” Hood says. “The melittin forms little pore-like attack complexes and ruptures the envelope, stripping it off the virus.”
According to Hood, an advantage of this approach is that the nanoparticle attacks an essential part of the virus’ structure. In contrast, most anti-HIV drugs inhibit the virus’s ability to replicate. But this anti-replication strategy does nothing to stop initial infection, and some strains of the virus have found ways around these drugs and reproduce anyway.
“We are attacking an inherent physical property of HIV,” Hood says. “Theoretically, there isn’t any way for the virus to adapt to that. The virus has to have a protective coat, a double-layered membrane that covers the virus.”
Beyond prevention in the form of a vaginal gel, Hood also sees potential for using nanoparticles with melittin as therapy for existing HIV infections, especially those that are drug-resistant. The nanoparticles could be injected intravenously and, in theory, would be able to clear HIV from the blood stream.
“The basic particle that we are using in these experiments was developed many years ago as an artificial blood product,” Hood says. “It didn’t work very well for delivering oxygen, but it circulates safely in the body and gives us a nice platform that we can adapt to fight different kinds of infections.”
Since melittin attacks double-layered membranes indiscriminately, this concept is not limited to HIV. Many viruses, including hepatitis B and C, rely on the same kind of protective envelope and would be vulnerable to melittin-loaded nanoparticles.
While this particular paper does not address contraception, Hood says the gel easily could be adapted to target sperm as well as HIV. But in some cases people may only want the HIV protection.
“We also are looking at this for couples where only one of the partners has HIV, and they want to have a baby,” Hood says. “These particles by themselves are actually very safe for sperm, for the same reason they are safe for vaginal cells.”
While this work was done in cells in a laboratory environment, Hood and his colleagues say the nanoparticles are easy to manufacture in large enough quantities to supply them for future clinical trials.
Referent
Hood JL, Jallouck AP, Campbell N, Ratner L, Wickline SA. Cytolytic nanoparticles attenuate HIV-1 infectivity. Antiviral Therapy. Vol. 19: 95 - 103. 2013
This work was supported by the Bill & Melinda Gates Foundation Grand Challenges Explorations grant number OPP1024642 ‘Fusogenic nanoparticles for combined anti-HIV/contraception.’
Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish andSt. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.
Researchers at Washington University in St. Louis (WU) say they’ve found a way to effectively destroy the HIV virus using a toxin found in bee venom.The study, published Thursday in the journal Antiviral Therapy, states that the technique not only destroys the virus that causes AIDS, but also leaves surrounding cells intact.Researchers say they hope the nanoparticle technology could be incorporated into a vaginal gel to prevent the spread of HIV in areas with high rates of infection.
How Nanoparticles & Bee Venom Destroy HIV
Microscopic nanoparticles have unique and exciting properties. In biomedicine, they are used to transport important proteins throughout the body. Bee venom’s principle toxin is melittin, a small protein. Researchers used nanoparticles to distribute melittin in laboratory studies.
Similar to the way a bee injects its venom into your skin using its stinger, the toxin melittin is able to poke holes in the protective coating of HIV and other viruses.
“We are attacking an inherent physical property of HIV,” Dr. Joshua L. Hood, a research instructor in medicine at WU, said in a press release. “Theoretically, there isn’t any way for the virus to adapt to that. The virus has to have a protective coat, a double-layered membrane that covers the virus.”
When researchers loaded the toxin into nanoparticles, they found that it didn’t harm normal cells because of a protective bumper added to the nanoparticle’s surface. Because HIV cells are smaller than regular cells, they slide between the bumpers while leaving healthy, normal cells intact.
Most current HIV treatments focus on inhibiting HIV’s ability to replicate, but do nothing to stop the initial infection. However, researchers say that because the venom-laced nanoparticles attack a crucial part of HIV’s structure, they can kill before the virus has a chance to infect a person.
How Bee Venom Nanoparticles Can Help Stop the Spread of HIV
Researchers say these bee venom nanoparticles could be used in a vaginal gel to help prevent the spread of HIV in developing countries, such as parts of Africa with a high HIV rate. They could also be used by people who want HIV protection, but not contraception.
“We also are looking at this for couples where only one of the partners has HIV, and they want to have a baby,” Hood said. “These particles by themselves are actually very safe for sperm, for the same reason they are safe for vaginal cells.”
Beyond preventive measures, Hood sees the potential for treating existing HIV infections. He theorizes that the nanoparticles could be injected into a person’s blood in order to clear HIV cells from the bloodstream.
The technology could also be used to combat other infectious diseases, such as hepatitis B and C, because the viruses share a similar protective membrane to the HIV virus.
Dr. George Krucik, Healthline’s director of clinical content, said that while nanoparticle research is not new, much more research will be required before these results can be put to use in people.
“This delivery technology holds out the promise of destroying circulating viruses that have not entered a cell, so in theory they could prevent a virus from infecting a cell,” he said. “These laboratory experiments are known as proof of concept studies, which demonstrate the feasibility of the technology. The use of this technology in humans has yet to be explored and will require years of study and clinical trials to see if they are effective in real live people.”
Bee venom is also being studied for use in pain relief medications and anti-aging creams.
Nanoparticles carrying a toxin found in bee venom can destroy human immunodeficiency virus (HIV) while leaving surrounding cells unharmed, researchers atWashington University School of Medicine in St. Louis have shown. The finding is an important step toward developing a vaginal gel that may prevent the spread of HIV, the virus that causes AIDS.
“Our hope is that in places where HIV is running rampant, people could use this gel as a preventive measure to stop the initial infection,” says Joshua L. Hood, MD, PhD, a research instructor in medicine.The study appears in the current issue of Antiviral Therapy.
Bee venom contains a potent toxin called melittin that can poke holes in the protective envelope that surrounds HIV, and other viruses. Large amounts of free melittin can cause a lot of damage. Indeed, in addition to anti-viral therapy, the paper’s senior author, Samuel A. Wickline, MD, the J. Russell Hornsby Professor of Biomedical Sciences, has shown melittin-loaded nanoparticles to be effective in killing tumor cells.
The new study shows that melittin loaded onto these nanoparticles does not harm normal cells. That’s because Hood added protective bumpers to the nanoparticle surface. When the nanoparticles come into contact with normal cells, which are much larger in size, the particles simply bounce off. HIV, on the other hand, is even smaller than the nanoparticle, so HIV fits between the bumpers and makes contact with the surface of the nanoparticle, where the bee toxin awaits.
“Melittin on the nanoparticles fuses with the viral envelope,” Hood says. “The melittin forms little pore-like attack complexes and ruptures the envelope, stripping it off the virus.”
According to Hood, an advantage of this approach is that the nanoparticle attacks an essential part of the virus’ structure. In contrast, most anti-HIV drugs inhibit the virus’s ability to replicate. But this anti-replication strategy does nothing to stop initial infection, and some strains of the virus have found ways around these drugs and reproduce anyway.
“We are attacking an inherent physical property of HIV,” Hood says. “Theoretically, there isn’t any way for the virus to adapt to that. The virus has to have a protective coat, a double-layered membrane that covers the virus.”
Beyond prevention in the form of a vaginal gel, Hood also sees potential for using nanoparticles with melittin as therapy for existing HIV infections, especially those that are drug-resistant. The nanoparticles could be injected intravenously and, in theory, would be able to clear HIV from the blood stream.
“The basic particle that we are using in these experiments was developed many years ago as an artificial blood product,” Hood says. “It didn’t work very well for delivering oxygen, but it circulates safely in the body and gives us a nice platform that we can adapt to fight different kinds of infections.”
Since melittin attacks double-layered membranes indiscriminately, this concept is not limited to HIV. Many viruses, including hepatitis B and C, rely on the same kind of protective envelope and would be vulnerable to melittin-loaded nanoparticles.
While this particular paper does not address contraception, Hood says the gel easily could be adapted to target sperm as well as HIV. But in some cases people may only want the HIV protection.
“We also are looking at this for couples where only one of the partners has HIV, and they want to have a baby,” Hood says. “These particles by themselves are actually very safe for sperm, for the same reason they are safe for vaginal cells.”
While this work was done in cells in a laboratory environment, Hood and his colleagues say the nanoparticles are easy to manufacture in large enough quantities to supply them for future clinical trials.
Referent
Hood JL, Jallouck AP, Campbell N, Ratner L, Wickline SA. Cytolytic nanoparticles attenuate HIV-1 infectivity. Antiviral Therapy. Vol. 19: 95 - 103. 2013
This work was supported by the Bill & Melinda Gates Foundation Grand Challenges Explorations grant number OPP1024642 ‘Fusogenic nanoparticles for combined anti-HIV/contraception.’
Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish andSt. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.
การแปล กรุณารอสักครู่..
