Positive controls are groups where a phenomenon is expected. That is, they ensure that there is an effect when there should be an effect, by using an experimental treatment that is already known to produce that effect (and then comparing this to the treatment that is being investigated in the experiment).
Positive controls are often used to assess test validity. For example, to assess a new test's ability to detect a disease (its sensitivity), then we can compare it against a different test that is already known to work. The well-established test is the positive control, since we already know that the answer to the question (whether the test works) is yes.
Similarly, in an enzyme assay to measure the amount of an enzyme in a set of extracts, a positive control would be an assay containing a known quantity of the purified enzyme (while a negative control would contain no enzyme). The positive control should give a large amount of enzyme activity, while the negative control should give very low to no activity.
If the positive control does not produce the expected result, there may be something wrong with the experimental procedure, and the experiment is repeated. For difficult or complicated experiments, the result from the positive control can also help in comparison to previous experimental results. For example, if the well-established disease test was determined to have the same effectiveness as found by previous experimenters, this indicates that the experiment is being performed in the same way that the previous experimenters did.
When possible, multiple positive controls may be used — if there is more than one disease test that is known to be effective, more than one might be tested. Multiple positive controls also allow finer comparisons of the results (calibration, or standardization) if the expected results from the positive controls have different sizes. For example, in the enzyme assay discussed above, a standard curve may be produced by making many different samples with different quantities of the enzyme.