Seed germination is controlled by a number of mechanisms and is necessary for the growth and development of the embryo, resulting in the eventual production of a new plant. Under unfavorable conditions seeds may become dormant (secondary dormancy) to maintain their germination ability. However, when the conditions are favorable seeds can germinate. There are a number of factors controlling seed germination and dormancy, including plant hormones, which are produced by both plant and soil bacteria. Interactions between plant hormones and plant genes affect seed germination. While the activity of plant hormones is controlled by the expression of genes at different levels, there are plant genes that are activated in the presence of specific plant hormones. Hence, adjusting gene expression may be an effective way to enhance seed germination. The hormonal signaling of IAA and gibberellins has been presented as examples during plant growth and development including seed germination. Some interesting results related to the effects of seed gene distribution on regulating seed activities have also been presented. The role of soil bacteria is also of significance in the production of plant hormones during seed germination, as well as during the establishment of the seedling, by affecting the plant rhizosphere. Most recent findings regarding seed germination and dormancy are reviewed. The significance of plant hormones including abscisic acid, ethylene, gibberellins, auxin, cytokinins and brassinosteroids, with reference to proteomic and molecular biology studies on germination, is also discussed. This review article contains almost a complete set of details, which may affect seed biology during dormancy and growth.