The case has been made that in order to become an effective and efficient complement to the suite of modern crop improvement and functional genomics strategies, a significant amount of the associated drudgery must be mitigated. This desired efficiency can be achieved by the incorporation of the very powerful novel biotechnologies that have significantly amplified the scopes for addressing biological questions into the processes for the induction, detection and deployment of mutation events. Genomics, the study of the whole genetic makeup of an individual at the molecular level, is particularly suited to the enhancing of efficiencies of the detection and deployment of mutation events. To fully realize the benefits of induced mutagenesis however, there must also be reliable means for generating phenotypic data at high throughputs. A means for effectively injecting the mutants, despite the deleterious alleles that they additionally carry, into breeding programs must also be well thought through. Clearly, the bottlenecks to phenotyping large mutant populations must be removed just as the additional costs for breaking linkage drags must be reduced implying therefore that phenomics and pre-breeding will become increasingly important ancillary aspects to induced mutagenesis.