FIGURE 8. Final version with traditional manufacturing.
V. COMPARISON OF MANUFACTURING TECHNIQUES ON TIME TO MARKET (TTM)
Of the various prototype fabrication techniques available for
the proposed gaming die, two of which have been discussed at length here: 1) an enhanced 3D printing with the integration of conductor and component embedding, and 2) traditional flexible circuit fabrication embedded within a plastic case fabricated with injection molding. It is important to note that in this application example, bread boarding the circuit was not sufficient to test the functionality as the electronics were required to be rolled (using the six-sided die) to under- stand the impact of the corresponding settling time before the top surface could be illuminated. Versions 1 through 3 were fabricated using the SL technique which, without requir- ing tooling, allowed for faster turn-around time and were
therefore, better suited for prototyping in early stage develop- ment. However, the reduced durability of the conductive inks and photo curable polymers would presumably result in a less reliable final product [9], [28]. Alternatively, version 4 was fabricated using traditional manufacturing, and consequently could be fabricated for significantly less cost per device – better for high volume production - but with the trade-off of extended lead times due to the required tooling and therefore, would not be well suited for the development cycle.
In order to compare and contrast these differences, it is important to note that (1) the research and development of a fully automated 3D printing system with complete integration of the component and conductor embedding technology is currently underway and (2) the work described here included significant amounts of manual intervention. However, realis- tic assumptions can be made and conclusions can be drawn regarding the time required to fabricate a device of related complexity to the gaming die using a fully automated, inte- grated 3D printing technique. Furthermore, even with dif- ferent forms of 3D printing possible (e.g. material extrusion versus vat photo polymerization – used in this example), as well as different forms of embedding conductors (ink-jetting, micro-dispensing, embedding of solid wires, etc.), and a wide range of different materials, the assumptions of fabrication time remain reasonable and can be applied generally to other enhanced AM technologies. In fact, a new system based on FDM, which extrudes production-grade thermoplastics, is the current focus of the research group, and furthermore, this system avoids conductive inks by submerging wires directly into the thermoplastic without disrupting planarization of the substrate to allow for subsequent continuation of the fabrica- tion. The following fabrication time analysis would be similar and applicable to this next generation system as well.
In terms of time from design of part to first part fabrication, version 3 (SL fabricated substrate with electrical components) required 6 hours for the stereolithography and then 24 hours to populate the substrate with components and deposit and cure ink in the channels for a total of 30 hours. Version 4 (plastic injection molded shell with electrical components on a flex PCB) required a minimum of 120 hours to build, which resulted from either of two critical paths: (1) the time to order the injection mold and build the molded shell (which could possibly be equivalent to the time for the previous example if a 3D printed alternative were available), or, more critically, (2) the time to fabricate the flexible printed circuit board and populate the board with electrical components. Many assumptions can be made about the range of time that these two processes can take but a reasonable estimation for either is 5 workdays based on the experience of this project (yielding the minimum 120 hour estimate). For a contract company to build and populate a flex circuit would require that all components were in stock and generally lead times can be much longer than a week without sufficient upfront planning. Based on this simple analysis, the new breadboarding approach using SL with embedded electronics, provided a minimum of 4:1 improvement in time to test the
prototype. This translates into significant time savings in time to market.
To compare the two existing cases to a hypothetical auto- mated system, if one were to build the same SL substrate without any of the components, the build time would only be about 6 hours. This provides a base line for an automated system, which would require integrating additional manufac- turing activities for the placement and routing of components. The build time would increase by some amount required to integrate the electronics and this time would be design depen- dent – where designs with complex substrates and simple electronics (e.g. button and LED in a large structure) would spend a larger fraction of time fabricating the dielectric, while other designs that had complex electronics and simple substrates would be reversed. If the first case added 25% to the manufacturing time and the second case tripled the time (300%), then the time to part would range from 7.5 hours to
18 hours depending on the design complexity – significantly less – in either case - than the traditional approach at a minimum of 120 hours.
Finally, as an anecdotal comment, the 3D printed version was overwhelmingly received more favorably than the tradi- tionally manufactured version – possibly due to the color, or the surface finish, or the modern appearance of the electronics flush to the external surface. Without a doubt, 3D printing currently has captured the imagination of popular culture today, and consequently, the 3D printed die version has a more intangible attractive quality (e.g. je ne sais quoi).
VI. CONCLUSION
This paper describes an enhanced 3D printing technology that by printing multifunctional prototypes can dramatically reduce the total time of the design cycle for an electronic device. An example case study is provided of four gen- erations of a novelty electronic gaming die. The process, which includes building dielectric substrates using 3D print- ing, is enhanced with other complementary manufacturing technologies such as conductor embedding and component pick and place. By interrupting the 3D printing process and integrating electronics functionality into the structure, rapidly-developed, high-fidelity prototypes can be fabricated in order to capture and evaluate form, fit and functionality simultaneously.
ACKNOWLEDGMENT
The research presented here was conducted at The University of Texas at El Paso within the W. M. Keck Center for 3D Innovation (Keck Center). Through funding from the State of Texas Emerging Technology Fund, the Keck Center recently expanded to over 13,000 sq. ft., housing state-of-the-art facil- ities and equipment for additive manufacturing processes, materials, and applications. The authors are grateful to Elaine Maestas, Cesar Soto, and Luis Bañuelos for their participation and contribution. The findings and opinions presented in this paper are those of the authors and do not necessarily reflect those of the sponsors of this research.
รูปที่ 8 รุ่นสุดท้าย ด้วยการผลิตแบบดั้งเดิมV. เปรียบเทียบเทคนิคการผลิตตามเวลาตลาด (จุด)ของต่าง ๆ ต้นประดิษฐ์เทคนิคการหานำเสนอเกมตาย สองซึ่งได้รับกล่าวถึงยาวนี่: 1) การพิมพ์ 3D ขั้นสูง ด้วยนำฝังส่วนประกอบ และประดิษฐ์วงจร 2) แบบยืดหยุ่นฝังอยู่ภายในกรณีพลาสติกหลังสร้าง ด้วยฉีด สิ่งสำคัญคือต้องทราบว่า ในตัวอย่างนี้โปรแกรมประยุกต์ ขนมปังขึ้นวงจรไม่เพียงพอที่จะทดสอบการทำงานเป็นอุปกรณ์อิเล็กทรอนิกส์ที่ต้องสะสม (ใช้ 6 หน้าตาย) กับผลกระทบของเวลา settling สอดคล้องก่อนสามารถอร่ามผิวด้านใต้ขาตั้ง รุ่นที่ 1 ถึง 3 ได้หลังสร้างโดยใช้เทคนิค SL ที่ โดยเครื่องมือ requir-ไอเอ็นจี ได้ในเวลารวดเร็วที่สามารถเปิดสถาน ดังนั้น เหมาะสำหรับต้นแบบในช่วงระยะพัฒนาติดขัด อย่างไรก็ตาม ความทนทานลดลงหมึกไฟฟ้าและโพลิเมอร์รักษาภาพจะสันนิษฐานว่าเกิดก่อนสุดท้ายผลิตภัณฑ์ [9], [28] หรือ รุ่น 4 หลังสร้างโดยใช้การผลิตแบบดั้งเดิม และดังนั้น อาจจะหลังสร้างสำหรับต้นทุนน้อยมากต่ออุปกรณ์ – ดี สำหรับการ ผลิตปริมาณมาก - แต่ trade-off เป้าหมายขยายเวลาเนื่องจากต้องใช้เครื่องมือ และ ดังนั้น จะไม่เหมาะสมสำหรับวงจรการพัฒนาIn order to compare and contrast these differences, it is important to note that (1) the research and development of a fully automated 3D printing system with complete integration of the component and conductor embedding technology is currently underway and (2) the work described here included significant amounts of manual intervention. However, realis- tic assumptions can be made and conclusions can be drawn regarding the time required to fabricate a device of related complexity to the gaming die using a fully automated, inte- grated 3D printing technique. Furthermore, even with dif- ferent forms of 3D printing possible (e.g. material extrusion versus vat photo polymerization – used in this example), as well as different forms of embedding conductors (ink-jetting, micro-dispensing, embedding of solid wires, etc.), and a wide range of different materials, the assumptions of fabrication time remain reasonable and can be applied generally to other enhanced AM technologies. In fact, a new system based on FDM, which extrudes production-grade thermoplastics, is the current focus of the research group, and furthermore, this system avoids conductive inks by submerging wires directly into the thermoplastic without disrupting planarization of the substrate to allow for subsequent continuation of the fabrica- tion. The following fabrication time analysis would be similar and applicable to this next generation system as well.ในแง่ของเวลาจากการออกแบบส่วนการผลิตส่วนแรก รุ่น 3 (SL หลังสร้างพื้นผิว ด้วยไฟฟ้าประกอบ) ต้องแล้ว 24 ชั่วโมงเพื่อสร้างพื้นผิว มีส่วนประกอบและนำฝากธนาคารและรักษาหมึกในช่องจำนวน 30 ชั่วโมงและ 6 ชั่วโมงสำหรับการ stereolithography รุ่น 4 (แม่พิมพ์ฉีดพลาสติกเชลล์กับส่วนประกอบอุปกรณ์ไฟฟ้าบน PCB ยืดหยุ่น) อย่างน้อย 120 ชั่วโมงสร้าง ซึ่งเป็นผลมาจากทั้งสองเส้นทางที่สำคัญที่จำเป็น: (1) เวลาในการสั่งฉีดแม่พิมพ์ และสร้างเปลือกแม่พิมพ์ (ซึ่งอาจจัดเป็นเทียบเท่ากับเวลาเช่นก่อนหน้านี้ถ้าเป็นทางเลือกการพิมพ์ 3D มี) หรือ ที่ เหลือ, (2) เวลาปั้นบอร์ดวงจรพิมพ์มีความยืดหยุ่น และเติมบอร์ด มีส่วนประกอบของไฟฟ้า สามารถทำสมมติฐานมากมายเกี่ยวกับช่วงเวลาที่กระบวนการสองเหล่านี้สามารถใช้ ได้ 5 วันทำงานที่ขึ้นอยู่กับประสบการณ์ของโครงการ (ผลผลิตการประเมินขั้นต่ำ 120 ชั่วโมง) เป็นการประเมินที่เหมาะสมสำหรับ สำหรับบริษัทสัญญาสร้าง และใส่ทำงานแบบยืดหยุ่น วงจรจะต้องมีว่า ส่วนประกอบทั้งหมดที่มีในสต็อก และโดยทั่วไประยะเวลารอคอยได้นานกว่าสัปดาห์ โดยวางแผนตะวันเพียงพอ ตามนี้วิเคราะห์ วิธี breadboarding ใหม่ที่ SL ด้วยอิเล็กทรอนิกส์ฝังตัว ให้อย่างน้อย 4:1 การปรับปรุงเวลาในการทดสอบ ต้นแบบ นี้แปลเป็นการประหยัดเวลาที่สำคัญในตลาดTo compare the two existing cases to a hypothetical auto- mated system, if one were to build the same SL substrate without any of the components, the build time would only be about 6 hours. This provides a base line for an automated system, which would require integrating additional manufac- turing activities for the placement and routing of components. The build time would increase by some amount required to integrate the electronics and this time would be design depen- dent – where designs with complex substrates and simple electronics (e.g. button and LED in a large structure) would spend a larger fraction of time fabricating the dielectric, while other designs that had complex electronics and simple substrates would be reversed. If the first case added 25% to the manufacturing time and the second case tripled the time (300%), then the time to part would range from 7.5 hours to18 hours depending on the design complexity – significantly less – in either case - than the traditional approach at a minimum of 120 hours.Finally, as an anecdotal comment, the 3D printed version was overwhelmingly received more favorably than the tradi- tionally manufactured version – possibly due to the color, or the surface finish, or the modern appearance of the electronics flush to the external surface. Without a doubt, 3D printing currently has captured the imagination of popular culture today, and consequently, the 3D printed die version has a more intangible attractive quality (e.g. je ne sais quoi).VI. CONCLUSIONThis paper describes an enhanced 3D printing technology that by printing multifunctional prototypes can dramatically reduce the total time of the design cycle for an electronic device. An example case study is provided of four gen- erations of a novelty electronic gaming die. The process, which includes building dielectric substrates using 3D print- ing, is enhanced with other complementary manufacturing technologies such as conductor embedding and component pick and place. By interrupting the 3D printing process and integrating electronics functionality into the structure, rapidly-developed, high-fidelity prototypes can be fabricated in order to capture and evaluate form, fit and functionality simultaneously.ACKNOWLEDGMENTThe research presented here was conducted at The University of Texas at El Paso within the W. M. Keck Center for 3D Innovation (Keck Center). Through funding from the State of Texas Emerging Technology Fund, the Keck Center recently expanded to over 13,000 sq. ft., housing state-of-the-art facil- ities and equipment for additive manufacturing processes, materials, and applications. The authors are grateful to Elaine Maestas, Cesar Soto, and Luis Bañuelos for their participation and contribution. The findings and opinions presented in this paper are those of the authors and do not necessarily reflect those of the sponsors of this research.
การแปล กรุณารอสักครู่..
