Fungal spores are ubiquitous in the environment. However, exposure levels in workplaces where mouldy materials are handled are much higher than in common indoor and outdoor environments. Spores of all tested species induced inflammation in experimental studies. The response to mycotoxin-producing and pathogenic species was much stronger. In animal studies, nonallergic responses dominated after a single dose. Allergic responses also occurred, especially to mycotoxin-producing and pathogenic species, and after repeated exposures. Inhalation of a single spore dose by subjects with sick building syndrome indicated no observed effect levels of 4 × 103 Trichoderma harzianum spores/m3 and 8 × 103 Penicillium chrysogenum spores/m3 for lung function, respiratory symptoms, and inflammatory cells in the blood. In asthmatic patients allergic to Penicillium sp. or Alternaria alternata, lowest observed effect levels (LOELs) for reduced airway conductance were 1 × 104 and 2 × 104 spores/m3, respectively. In epidemiological studies of highly exposed working populations lung function decline, respiratory symptoms and airway inflammation began to appear at exposure levels of 105 spores/m3. Thus, human challenge and epidemiological studies support fairly consistent LOELs of approximately 105 spores/m3 for diverse fungal species in nonsensitised populations. Mycotoxin-producing and pathogenic species have to be detected specifically, however, because of their higher toxicity.