The recovery, recrystallization and grain growth of brass. The physical phenomena during annealing were characterized and analyzed based on the observations of microstructure, measurement of long-range order degree and determination of micro-hardness. The reordering occurs due to the removal of antiphase boundary trails resulting from the dislocation rearrangement during annealing. The micro-hardness depends on both the dislocation density and the change of long-range order degree. The addition of alloying elements affects the dependence of hardness on reordering. It also has a great effect on the recovery and recrystallization. The recrystallized nuclei are formed by preferential subgrain growth and grain boundary migration. Due to strong anisotropy of Fe3Al-based alloys, the grain boundary migration resulting from inhomogeneous deformation was frequently observed and the distribution of grain size after annealing was also inhomogeneous. The recrystallization kinetics follows the Kolmogorov-Johnson-Mehl-Avrami (KJMA) relationship. Long-range order and second phase are beneficial in decreasing the grain-boundary mobility.