Integration basically refers to anti differentiation. Some simple applications of integration include calculating the area under a
curve or volume of curves revolution. There are two main reasons for numerical integration: analytical integration may be
impossible or infeasible, and in integrating tabulated data rather than known functions. There are several numerical methods
to approximate the integral numerically such as through the trapezoidal rule, Simpson’s 1
3
method, Simpson’s 3
8
method and
Gauss Quadrature method. Solving numerical integral through the Gauss Quadrature method leads to complicated function
calculation which may yield wrong results. Hence, there is a need to design a suitable tool in teaching and learning the
numerical methods, especially in Gauss Quadrature method. Here, we present a new tip to approximate an integral by 2-point
and 3-point Gauss Quadrature methods with the aid of the Casio fx-570ES plus scientific calculator. In doing so, we
employed the CALC function into the Casio fx-570ES plus scientific calculator to calculate the complicated function
calculation results from Gauss Quadrature method. It is found that the way suggested here is faster than the normal direct
calculation and the solution obtained is significantly more accurate. We conclude that the new tip increases the interest of
students in learning the numerical integral by Gauss Quadrature method.
Integration basically refers to anti differentiation. Some simple applications of integration include calculating the area under acurve or volume of curves revolution. There are two main reasons for numerical integration: analytical integration may beimpossible or infeasible, and in integrating tabulated data rather than known functions. There are several numerical methodsto approximate the integral numerically such as through the trapezoidal rule, Simpson’s 13method, Simpson’s 38method andGauss Quadrature method. Solving numerical integral through the Gauss Quadrature method leads to complicated functioncalculation which may yield wrong results. Hence, there is a need to design a suitable tool in teaching and learning thenumerical methods, especially in Gauss Quadrature method. Here, we present a new tip to approximate an integral by 2-pointand 3-point Gauss Quadrature methods with the aid of the Casio fx-570ES plus scientific calculator. In doing so, weemployed the CALC function into the Casio fx-570ES plus scientific calculator to calculate the complicated functioncalculation results from Gauss Quadrature method. It is found that the way suggested here is faster than the normal directcalculation and the solution obtained is significantly more accurate. We conclude that the new tip increases the interest ofstudents in learning the numerical integral by Gauss Quadrature method.
การแปล กรุณารอสักครู่..
