Clinkering zone (1300˚C – 1550˚C): This is the hottest zone where the formation of the most important cement mineral, C3S (alite), occurs. The zone begins as soon as the intermediate calcium aluminate and ferrite phases melt. The presence of the melt phase causes the mix to agglomerate into relatively large nodules about the size of marbles consisting of many small solid particles bound together by a thin layer of liquid (see Figure 3-3). Inside the liquid phase, C3S forms by reaction between C2S crystals and CaO. Crystals of solid C3S grow within the liquid, while crystals of belite formed earlier decrease in number but grow in size. The clinkering process is complete when all of silica is in the C3S and C2S crystals and the amount of free lime (CaO) is reduced to a minimal level (<1%).Cooling zone: As the clinker moves past the bottom of the kiln the temperature drops rapidly and the liquid phase solidifies, forming the other two cement minerals C3A (aluminate) and C4AF (ferrite). In addition, alkalis (primarily K) and sulfate dissolved in the liquid combine to form K2SO4 and Na2SO4. The nodules formed in the clinkering zone are now hard, and the resulting product is called cement clinker. The rate of cooling from the maximum temperature down to about 1100˚C is important, with rapid cooling giving a more reactive cement. This occurs because in this temperature range the C3S can decompose back into C2S and CaO, among other reasons. It is thus typical to blow air or spray water onto the clinker to cool it more rapidly as it exits the kiln.
การแปล กรุณารอสักครู่..
