1.3 Advantage of post-tensioned floors
Post-tensioning offers some very useful technical and economic advantages over reinforced concrete, particularly for long spans, where control of deflection is desirable, or if construction depth must be minimised. It is, however, not the best solution in all circumstances and the various alternative forms of construction should be carefully considered for each structure before making the choice.
For post-tensioning, it is important to consider availability of the hardware and the technical expertise required. Excepting very special design objectives, post-tensioning is unlikely to be economical for short spans. Often a combination of post-tensioning and another form of construction offers a good solution. For example, in a floor consisting of rectangular bays, if the short span is small enough, the best solution may be to span the slab in the long direction in post-tensioned concrete and use reinforced concrete beam strips in the short-span direction.
Economy of construction varies from one site to the next, depending on accessibility and availability of material and labour, and of course on the design loading and constraints that may be imposed by other disciplines, such as a restriction on the depth of the structure. It is, therefore, not possible to give a
For reinforced concrete, only the ultimate strength calculations are normally carried out and deflection in the serviceability state is deemed to be satisfied by confining the span-to-depth ratio within limits prescribed in the national standards. Only in rare cases is it necessary to calculate deflections. Crack control is usually governed by .deemed-to-satisfy rules for bar spacing.
In post-tensioned concrete design, serviceability calculations are carried out for the initial and final loading conditions, for deflection and cracking, and the ultimate strength is checked after this. Structural design of prestressed concrete, therefore, requires more effort.
The shallow depth of a post-tensioned floor is a particular advantage in multistorey buildings; in some cases it has been possible to add an extra floor where there was a restriction on building height" Even where there is no such restriction, the reduced building volume generates savings in the cost of services
and cladding, and in subsequent running and maintenance costs. The reduction in the weight of the building generates further savings in the cost of foundations; the weight of concrete in floors in a multistorey building may be as much as half of the total weight of the building. The cost per unit area of a post-tensioned floor, considered in isolation, may be higher than that of a reinforced floor of the same span and carrying the same load~ but it is quite possible for the building with post-tensioned floors to prove the more cost effective when the other savings are taken into account.
There are numerous differences between the behaviour of floors under service loads in the two forms of construction:
• As discussed earlier, post-tensioned concrete is at a slight disadvantage in floors where stresses due to applied load can be reversed. This would be the case for short continuous spans subject to heavy applied live loads compared with the self-weight of the floor, such as in warehouses.
Prestressed concrete undergoes more shortening of length compared with reinforced concrete, because of the initial axial compression. In a reinforced concrete member, the creep simply affects its deflection, but in prestressed concrete it also affects the length of the member.
Reinforced concrete floors on average tend to have a span-to-depth ratio between 20 and 25 whereas post-tensioned floors are usually in the range of 30 to 40. It is feasible for the ratio to approach 60 for lightly loaded long spans. Post-tensioning is rarely used in spans under 6 m (20 ft) because the shallow depths do not provide sufficient eccentricity for the efficient use of prestressing.
The upward force exerted by a curved tendon acts against the applied loads.
The deflection of the floor is, therefore, lower because it corresponds to the net difference between the applied downward load and the upward force from the tendons.
The drape of the tendons and the prestressing force can be tailored to control deflection where so desired. It is possible to design a post-tensioned floor which will have no deflection under a given load, although this is unlikely to result in economical use of prestressingT
In post-tensioned construction, the concrete section under working load is either in compression or it has a small amount of tension on one face. In either case it is unlikely to have any cracks, and if any do develop they will not penetrate deeply into the section. By comparison, in reinforced concrete construction the concrete must crack before the reinforcement can be stressed to the design level.
The whole of the post-tensioned concrete section, being uncracked, is effective in flexure, so that a post-tensioned floor will have less deflection than a reinforced concrete floor of the same depth and subject to the same load. Post-tensioning keeps the concrete in compression, which controls shrinkage
cracking and reduces the possibility of opening up of construction joints. When tensile stresses do develop in a post-tensioned member, their magnitude is much smaller than in an equivalent reinforced concrete member. A post-tensioned floor, therefore, has better watertightness than a reinforced concrete floor. This is particularly important in car parks where de-icing salts often cause corrosion of reinforcement in a reinforced concrete floor. The hairline cracks over supports in a reinforced concrete continuous floor may allow water to penetrate and freeze, causing spalling of concrete.
The uncracked concrete of a post-tensioned floor provides a better protection against corrosion of steel than that given by a cracked reinforced concrete section. In unbonded post-tensioning the grease packed plastic extrusion provides excellent protection to the strand.
A post-tensioned floor, being lighter than a reinforced concrete floor of similar span and carrying the same applied load, imposes smaller loads on the columns and foundations.
The columns particularly benefit from the post-tensioning of the floor, because the tendon curvature and the higher creep of the floor combine to reduce the column moments, as shown in Chapter 5. The size of a column and its reinforcement are usually governed by the bending moment. A reduction in moment can, therefore, result in significant savings.
Stiff columns and walls may attract significant magnitudes of lateral forces. These should be checked.
Draped tendons directly carry some of the shear force—numerically equal to the vertical component of the tendon force near the support. The concrete section, therefore, carries a smaller shear force and so drop panels are less likely to be needed in post-tensioned construction. Of course, this effect can be offset by the fact that post-tensioned floors are shallower than reinforced concrete floors.
The presence of an axial compressive stress on the concrete section enhances its punching strength.
At high temperatures, say above 150°c, strand loses its strength faster than rod reinforcement. This is compensated for by specifying a deeper concrete cover to tendons than to rod reinforcement in reinforced concrete.
In reinforced concrete, micro-cracks must develop before the reinforcement can function at its required level of stress. Post-tensioned concrete, as stated earlier, is expected to remain crack-free in service. In case of an isolated overloading causing cracks in a post-tensioned floor, the cracks are expected to close once the overloading is eliminated.