Inter-electrode distance was observed to be an effective factor in the electrolytic treatment of STS water. The removal percentage of TD, COD and BOD increased progressively with decrease in inter-electrode distance from 10.0 to 2.5 cm, whereby it exhibited the maximum removal of TD (65.9 %), COD (57.41 %) and BOD (59.56 %) at the shortest distance (2.5 cm) between the electrodes (Al and Fe) with each electrode area of 80 cm2, whereas the Fe and Al electrode combination showed the removal of TD (59.66 %), COD (56.46 %) and BOD (51.99 %) (Figs. 2, 3). Similar observations have also been reported by Li et al. (2008) that COD decreases with the decrease in distance between electrodes of the same composition. This is because the shorter distance speeds up the anion discharge on the anode and improves the oxidation. It also reduces resistance, the electricity consumption and the cost of the wastewater treatment. Ghosh et al. (2008) have also observed that with the increase of inter-electrode distance, the percentage removal of dye products from waste water decreases. At a lower inter-electrode distance, the resistance encountered by current flowing in the solution medium decreases thereby facilitating the electrolytic process and resulting in enhanced dye removal. The above results also indicated the superiority of aluminum as sacrificial electrode when compared to that of iron as sacrificial electrode. This can probably be attributed to better coagulating properties of Al3+ to those of oxidized products of Fe. It may be due to the fact that the majority of Al3+ ions subsequently precipitates in the form of hydroxides. The adsorption of Al3+ ion with colloidal pollutants results in coagulation, and resulting coagulants can be more efficiently removed by settling, surface complexation and electrostatic attraction in comparison to Fe2+ ions.