AbstractProblem formulation is the first step in environmental risk as การแปล - AbstractProblem formulation is the first step in environmental risk as ไทย วิธีการพูด

AbstractProblem formulation is the

Abstract
Problem formulation is the first step in environmental risk assessment (ERA) where policy goals, scope, assessment endpoints, and methodology are distilled to an explicitly stated problem and approach for analysis. The consistency and utility of ERAs for genetically modified (GM) plants can be improved through rigorous problem formulation (PF), producing an analysis plan that describes relevant exposure scenarios and the potential consequences of these scenarios. A properly executed PF assures the relevance of ERA outcomes for decision-making. Adopting a harmonized approach to problem formulation should bring about greater uniformity in the ERA process for GM plants among regulatory regimes globally. This paper is the product of an international expert group convened by the International Life Sciences Institute (ILSI) Research Foundation.
Keywords: Ecological risk assessment, GMO, Genetically engineered, Hazard identification
Introduction
Risk assessment is widely used in decision-making concerning the release of genetically modified (GM) plants into the environment (EFSA 2006). The process of integrating the likelihood and consequences of exposure, in terms of harm, forms the basis of environmental risk assessment (ERA). As the first step in ERA, the problem formulation (PF) establishes the parameters that are of greatest relevance to the assessment.
A variety of national, regional, and international approaches to ERA of GM plants are emerging (Hill 2005), and these contain differing legislative triggers, terminology, and guidance regarding how the assessments are to be performed. The apparent differences among various assessment protocols obscure their similar underlying principles of case-by-case comparative risk assessment. Clarifying these underlying principles can lead to clearer assessments and improved communication among interested and affected parties. Recognizing common principles for PF will encourage harmonized approaches for risk assessment and may help less developed countries to formulate effective and relevant biosafety regulations for GM plants.
This paper proposes a common PF framework for environmental risk assessment of GM plants (Fig. 1). The framework does the following: (i) it provides a common language for the evaluation and communication of similarities and differences among various assessment regimens (see box—Glossary of Terms); (ii) it affords the necessary flexibility for further evolution and improvement of assessments and their harmonization; (iii) it offers a template for environmental assessment that may be applied in emerging national or regional regulatory guidance; and (iv) it aligns with the principles outlined in international conventions such as the Cartagena Protocol on Biosafety (http://www.cbd.int/biosafety/protocol.shtml) and the phytosanitary standards of the International Plant Protection Convention (IPPC 2001). The ERA paradigm described by the US Environmental Protection Agency (EPA) (USEPA 1992, 1998) has been used by the authors as a conceptual and procedural basis for a common framework and terminology that can be applied to ERAs for GM plants.
An inadequate PF may compromise the entire ERA and add to the level of uncertainty in subsequent decision-making. Frequent outcomes of this type of failure are continuing requests for more data, disproportionate risk mitigation measures and miscommunication of risk findings; this results in increased concerns about the environmental impact (Johnson et al. 2007; Raybould 2006) and leads to delayed decision-making. Some authors contend that such delays may lead to increased negative environmental impacts because of the consequent delays in the introduction of environmentally beneficial products (Raybould 2006, 2007). Additionally, an ERA with a poorly developed PF may have inadequately specified or inappropriate expressions of the environmental value to be protected (benefits including processes by which the environment produces resources), or insufficient clarity regarding the purpose and use of the data being collected. This report presents a framework for constructing PFs that can be applied to ERAs for GM plants.
Go to:
Problem formulation framework
The first step in ERA is problem formulation (USEPA 1998), which has also been referred to as hazard identification (Hill 2005; OECD 2003). We use the term problem formulation because it better reflects the broad base of information regarding the type and nature of potential adverse effects considered in an ERA for GM plants. A generic framework for PF is described in this section and shown in Fig. 1, recognizing that the case-by-case and comparative nature of ERAs for GM plants requires that many aspects of the problem be shaped by case-specific considerations as detailed in Developing the Problem Formulation. At the core of the PF process is the establishment of the ERA’s parameters (problem context) and the identification of risks of greatest relevance (problem definition).
Problem context
The problem context for risk assessment reflects values derived from the broad environmental policies and goals that direct risk analysis. Establishing the problem context sets the parameters for the risk assessment, including; protection goals, environmental scope, standard assessment endpoints (Suter 2000), and assessment methodology (see Glossary of Terms for definitions). In addition, the problem context describes case-specific details of the GM crop and certain baseline information used to determine the relative risk that can be attributed to the modification. This baseline information can include details of the biology of the parent organism and the nature of the receiving environment (e.g., presence of sexually compatible relatives, agronomic practices, presence of nearby protected areas or species, climate, etc.).
Environmental risk assessments are initiated to address protection goals, which may be defined in law, statutes, regulations, or guidance. Therefore, the problem context may include problems and endpoints for analysis with varying levels of relative importance or relevance to the specific case that is ultimately addressed in a particular ERA. In some cases, the problem context is determined by the purpose and scope of the ERA as described in regulatory standards. Such standards may also prescribe the characteristics of an appropriate comparator, general methodology to be used, and criteria for distinguishing between meaningful and negligible differences (Australia 2000; Standards Australia 2004). For example, the term ‘environment’ may require operational definition as the scope of the ERA may need to address anthropogenic as well as natural components of environment in some jurisdictions (New Zealand 1996) but not in others (Australia2000). Existing guidance documents addressing current risk assessment and risk management practices should be considered in the problem formulation process.
Importantly, the risk assessor must refine a broadly stated issue or concern into a relevant and manageable analysis. For instance, the stated protection goal may be to provide an adequate level of protection of biological diversity, http://www.cbd.int/biosafety/protocol.shtml. A critical challenge of PF is to identify an observable, measurable property that adequately reflects this desirable quality. To achieve this, it is necessary to define assessment endpoints and methodology that will direct the characterization of risk and produce information that will be relevant for decision-making. For example, beneficial insects are valued ecological entities and their abundance within the agroecosystem is important and can serve as a proxy or indicator of biological diversity. Therefore, “beneficial insect abundance” constitutes a useful assessment endpoint.
Problem definition
Problem definition is a distilling exercise that leads to the identification of reasonably postulated risks that warrant further analysis, and removes from consideration other potential but negligible risks. This is done in the form of a scoping assessment that generates and evaluates potential exposure scenarios (Garcia-Alonso et al. 2006). Each exposure scenario represents a meaningful problem that describes a causally linked pathway, or set of circumstances, that lead from the environmental release of the GM plant through to an environmental entity of value that may be adversely affected. Exposure when causally linked to harm allows for the description of risk as an adverse consequence from exposure.
In distilling the problem to a relevant form for analysis, the problem definition considers the protection goal and the specific case; this encompasses the plant being modified (the appropriate comparator), the nature of the GM plant, and the environment in which exposure is likely. Initially, this is a mental exercise or an abbreviated assessment. Experience with both GM and non-GM plants helps to identify the potentially meaningful problems. No single PF is likely to address every concern; rather, each concern that is eventually deemed relevant to the GM plant will be subject to a specific PF within the ERA.
The degree to which concerns are addressed within a given assessment (such as a regulatory dossier) will likely vary from case to case. Many concerns or questions of risk may be readily answered on the basis of prior knowledge and this prior knowledge may rule out some scenarios as insubstantial. For instance, for maize planted in the European Union, potential harm resulting from pollen-mediated gene flow to a sexually compatible wild relative is not a problem that requires analysis, due to the absence of wild relatives. The degree to which the ERA formally poses hypotheses and tests them with prior data varies depending on how and by whom the risk assessment will be used.
Many of the concerns included in the problem definition for a GM plant are general to all ERAs, and descriptions may be fou
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
AbstractProblem formulation is the first step in environmental risk assessment (ERA) where policy goals, scope, assessment endpoints, and methodology are distilled to an explicitly stated problem and approach for analysis. The consistency and utility of ERAs for genetically modified (GM) plants can be improved through rigorous problem formulation (PF), producing an analysis plan that describes relevant exposure scenarios and the potential consequences of these scenarios. A properly executed PF assures the relevance of ERA outcomes for decision-making. Adopting a harmonized approach to problem formulation should bring about greater uniformity in the ERA process for GM plants among regulatory regimes globally. This paper is the product of an international expert group convened by the International Life Sciences Institute (ILSI) Research Foundation.Keywords: Ecological risk assessment, GMO, Genetically engineered, Hazard identificationIntroductionRisk assessment is widely used in decision-making concerning the release of genetically modified (GM) plants into the environment (EFSA 2006). The process of integrating the likelihood and consequences of exposure, in terms of harm, forms the basis of environmental risk assessment (ERA). As the first step in ERA, the problem formulation (PF) establishes the parameters that are of greatest relevance to the assessment.A variety of national, regional, and international approaches to ERA of GM plants are emerging (Hill 2005), and these contain differing legislative triggers, terminology, and guidance regarding how the assessments are to be performed. The apparent differences among various assessment protocols obscure their similar underlying principles of case-by-case comparative risk assessment. Clarifying these underlying principles can lead to clearer assessments and improved communication among interested and affected parties. Recognizing common principles for PF will encourage harmonized approaches for risk assessment and may help less developed countries to formulate effective and relevant biosafety regulations for GM plants.This paper proposes a common PF framework for environmental risk assessment of GM plants (Fig. 1). The framework does the following: (i) it provides a common language for the evaluation and communication of similarities and differences among various assessment regimens (see box—Glossary of Terms); (ii) it affords the necessary flexibility for further evolution and improvement of assessments and their harmonization; (iii) it offers a template for environmental assessment that may be applied in emerging national or regional regulatory guidance; and (iv) it aligns with the principles outlined in international conventions such as the Cartagena Protocol on Biosafety (http://www.cbd.int/biosafety/protocol.shtml) and the phytosanitary standards of the International Plant Protection Convention (IPPC 2001). The ERA paradigm described by the US Environmental Protection Agency (EPA) (USEPA 1992, 1998) has been used by the authors as a conceptual and procedural basis for a common framework and terminology that can be applied to ERAs for GM plants.
An inadequate PF may compromise the entire ERA and add to the level of uncertainty in subsequent decision-making. Frequent outcomes of this type of failure are continuing requests for more data, disproportionate risk mitigation measures and miscommunication of risk findings; this results in increased concerns about the environmental impact (Johnson et al. 2007; Raybould 2006) and leads to delayed decision-making. Some authors contend that such delays may lead to increased negative environmental impacts because of the consequent delays in the introduction of environmentally beneficial products (Raybould 2006, 2007). Additionally, an ERA with a poorly developed PF may have inadequately specified or inappropriate expressions of the environmental value to be protected (benefits including processes by which the environment produces resources), or insufficient clarity regarding the purpose and use of the data being collected. This report presents a framework for constructing PFs that can be applied to ERAs for GM plants.
Go to:
Problem formulation framework
The first step in ERA is problem formulation (USEPA 1998), which has also been referred to as hazard identification (Hill 2005; OECD 2003). We use the term problem formulation because it better reflects the broad base of information regarding the type and nature of potential adverse effects considered in an ERA for GM plants. A generic framework for PF is described in this section and shown in Fig. 1, recognizing that the case-by-case and comparative nature of ERAs for GM plants requires that many aspects of the problem be shaped by case-specific considerations as detailed in Developing the Problem Formulation. At the core of the PF process is the establishment of the ERA’s parameters (problem context) and the identification of risks of greatest relevance (problem definition).
Problem context
The problem context for risk assessment reflects values derived from the broad environmental policies and goals that direct risk analysis. Establishing the problem context sets the parameters for the risk assessment, including; protection goals, environmental scope, standard assessment endpoints (Suter 2000), and assessment methodology (see Glossary of Terms for definitions). In addition, the problem context describes case-specific details of the GM crop and certain baseline information used to determine the relative risk that can be attributed to the modification. This baseline information can include details of the biology of the parent organism and the nature of the receiving environment (e.g., presence of sexually compatible relatives, agronomic practices, presence of nearby protected areas or species, climate, etc.).
Environmental risk assessments are initiated to address protection goals, which may be defined in law, statutes, regulations, or guidance. Therefore, the problem context may include problems and endpoints for analysis with varying levels of relative importance or relevance to the specific case that is ultimately addressed in a particular ERA. In some cases, the problem context is determined by the purpose and scope of the ERA as described in regulatory standards. Such standards may also prescribe the characteristics of an appropriate comparator, general methodology to be used, and criteria for distinguishing between meaningful and negligible differences (Australia 2000; Standards Australia 2004). For example, the term ‘environment’ may require operational definition as the scope of the ERA may need to address anthropogenic as well as natural components of environment in some jurisdictions (New Zealand 1996) but not in others (Australia2000). Existing guidance documents addressing current risk assessment and risk management practices should be considered in the problem formulation process.
Importantly, the risk assessor must refine a broadly stated issue or concern into a relevant and manageable analysis. For instance, the stated protection goal may be to provide an adequate level of protection of biological diversity, http://www.cbd.int/biosafety/protocol.shtml. A critical challenge of PF is to identify an observable, measurable property that adequately reflects this desirable quality. To achieve this, it is necessary to define assessment endpoints and methodology that will direct the characterization of risk and produce information that will be relevant for decision-making. For example, beneficial insects are valued ecological entities and their abundance within the agroecosystem is important and can serve as a proxy or indicator of biological diversity. Therefore, “beneficial insect abundance” constitutes a useful assessment endpoint.
Problem definition
Problem definition is a distilling exercise that leads to the identification of reasonably postulated risks that warrant further analysis, and removes from consideration other potential but negligible risks. This is done in the form of a scoping assessment that generates and evaluates potential exposure scenarios (Garcia-Alonso et al. 2006). Each exposure scenario represents a meaningful problem that describes a causally linked pathway, or set of circumstances, that lead from the environmental release of the GM plant through to an environmental entity of value that may be adversely affected. Exposure when causally linked to harm allows for the description of risk as an adverse consequence from exposure.
In distilling the problem to a relevant form for analysis, the problem definition considers the protection goal and the specific case; this encompasses the plant being modified (the appropriate comparator), the nature of the GM plant, and the environment in which exposure is likely. Initially, this is a mental exercise or an abbreviated assessment. Experience with both GM and non-GM plants helps to identify the potentially meaningful problems. No single PF is likely to address every concern; rather, each concern that is eventually deemed relevant to the GM plant will be subject to a specific PF within the ERA.
The degree to which concerns are addressed within a given assessment (such as a regulatory dossier) will likely vary from case to case. Many concerns or questions of risk may be readily answered on the basis of prior knowledge and this prior knowledge may rule out some scenarios as insubstantial. For instance, for maize planted in the European Union, potential harm resulting from pollen-mediated gene flow to a sexually compatible wild relative is not a problem that requires analysis, due to the absence of wild relatives. The degree to which the ERA formally poses hypotheses and tests them with prior data varies depending on how and by whom the risk assessment will be used.
Many of the concerns included in the problem definition for a GM plant are general to all ERAs, and descriptions may be fou
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
Abstract
Problem formulation is the first step in environmental risk assessment (ERA) where policy goals, scope, assessment endpoints, and methodology are distilled to an explicitly stated problem and approach for analysis. The consistency and utility of ERAs for genetically modified (GM) plants can be improved through rigorous problem formulation (PF), producing an analysis plan that describes relevant exposure scenarios and the potential consequences of these scenarios. A properly executed PF assures the relevance of ERA outcomes for decision-making. Adopting a harmonized approach to problem formulation should bring about greater uniformity in the ERA process for GM plants among regulatory regimes globally. This paper is the product of an international expert group convened by the International Life Sciences Institute (ILSI) Research Foundation.
Keywords: Ecological risk assessment, GMO, Genetically engineered, Hazard identification
Introduction
Risk assessment is widely used in decision-making concerning the release of genetically modified (GM) plants into the environment (EFSA 2006). The process of integrating the likelihood and consequences of exposure, in terms of harm, forms the basis of environmental risk assessment (ERA). As the first step in ERA, the problem formulation (PF) establishes the parameters that are of greatest relevance to the assessment.
A variety of national, regional, and international approaches to ERA of GM plants are emerging (Hill 2005), and these contain differing legislative triggers, terminology, and guidance regarding how the assessments are to be performed. The apparent differences among various assessment protocols obscure their similar underlying principles of case-by-case comparative risk assessment. Clarifying these underlying principles can lead to clearer assessments and improved communication among interested and affected parties. Recognizing common principles for PF will encourage harmonized approaches for risk assessment and may help less developed countries to formulate effective and relevant biosafety regulations for GM plants.
This paper proposes a common PF framework for environmental risk assessment of GM plants (Fig. 1). The framework does the following: (i) it provides a common language for the evaluation and communication of similarities and differences among various assessment regimens (see box—Glossary of Terms); (ii) it affords the necessary flexibility for further evolution and improvement of assessments and their harmonization; (iii) it offers a template for environmental assessment that may be applied in emerging national or regional regulatory guidance; and (iv) it aligns with the principles outlined in international conventions such as the Cartagena Protocol on Biosafety (http://www.cbd.int/biosafety/protocol.shtml) and the phytosanitary standards of the International Plant Protection Convention (IPPC 2001). The ERA paradigm described by the US Environmental Protection Agency (EPA) (USEPA 1992, 1998) has been used by the authors as a conceptual and procedural basis for a common framework and terminology that can be applied to ERAs for GM plants.
An inadequate PF may compromise the entire ERA and add to the level of uncertainty in subsequent decision-making. Frequent outcomes of this type of failure are continuing requests for more data, disproportionate risk mitigation measures and miscommunication of risk findings; this results in increased concerns about the environmental impact (Johnson et al. 2007; Raybould 2006) and leads to delayed decision-making. Some authors contend that such delays may lead to increased negative environmental impacts because of the consequent delays in the introduction of environmentally beneficial products (Raybould 2006, 2007). Additionally, an ERA with a poorly developed PF may have inadequately specified or inappropriate expressions of the environmental value to be protected (benefits including processes by which the environment produces resources), or insufficient clarity regarding the purpose and use of the data being collected. This report presents a framework for constructing PFs that can be applied to ERAs for GM plants.
Go to:
Problem formulation framework
The first step in ERA is problem formulation (USEPA 1998), which has also been referred to as hazard identification (Hill 2005; OECD 2003). We use the term problem formulation because it better reflects the broad base of information regarding the type and nature of potential adverse effects considered in an ERA for GM plants. A generic framework for PF is described in this section and shown in Fig. 1, recognizing that the case-by-case and comparative nature of ERAs for GM plants requires that many aspects of the problem be shaped by case-specific considerations as detailed in Developing the Problem Formulation. At the core of the PF process is the establishment of the ERA’s parameters (problem context) and the identification of risks of greatest relevance (problem definition).
Problem context
The problem context for risk assessment reflects values derived from the broad environmental policies and goals that direct risk analysis. Establishing the problem context sets the parameters for the risk assessment, including; protection goals, environmental scope, standard assessment endpoints (Suter 2000), and assessment methodology (see Glossary of Terms for definitions). In addition, the problem context describes case-specific details of the GM crop and certain baseline information used to determine the relative risk that can be attributed to the modification. This baseline information can include details of the biology of the parent organism and the nature of the receiving environment (e.g., presence of sexually compatible relatives, agronomic practices, presence of nearby protected areas or species, climate, etc.).
Environmental risk assessments are initiated to address protection goals, which may be defined in law, statutes, regulations, or guidance. Therefore, the problem context may include problems and endpoints for analysis with varying levels of relative importance or relevance to the specific case that is ultimately addressed in a particular ERA. In some cases, the problem context is determined by the purpose and scope of the ERA as described in regulatory standards. Such standards may also prescribe the characteristics of an appropriate comparator, general methodology to be used, and criteria for distinguishing between meaningful and negligible differences (Australia 2000; Standards Australia 2004). For example, the term ‘environment’ may require operational definition as the scope of the ERA may need to address anthropogenic as well as natural components of environment in some jurisdictions (New Zealand 1996) but not in others (Australia2000). Existing guidance documents addressing current risk assessment and risk management practices should be considered in the problem formulation process.
Importantly, the risk assessor must refine a broadly stated issue or concern into a relevant and manageable analysis. For instance, the stated protection goal may be to provide an adequate level of protection of biological diversity, http://www.cbd.int/biosafety/protocol.shtml. A critical challenge of PF is to identify an observable, measurable property that adequately reflects this desirable quality. To achieve this, it is necessary to define assessment endpoints and methodology that will direct the characterization of risk and produce information that will be relevant for decision-making. For example, beneficial insects are valued ecological entities and their abundance within the agroecosystem is important and can serve as a proxy or indicator of biological diversity. Therefore, “beneficial insect abundance” constitutes a useful assessment endpoint.
Problem definition
Problem definition is a distilling exercise that leads to the identification of reasonably postulated risks that warrant further analysis, and removes from consideration other potential but negligible risks. This is done in the form of a scoping assessment that generates and evaluates potential exposure scenarios (Garcia-Alonso et al. 2006). Each exposure scenario represents a meaningful problem that describes a causally linked pathway, or set of circumstances, that lead from the environmental release of the GM plant through to an environmental entity of value that may be adversely affected. Exposure when causally linked to harm allows for the description of risk as an adverse consequence from exposure.
In distilling the problem to a relevant form for analysis, the problem definition considers the protection goal and the specific case; this encompasses the plant being modified (the appropriate comparator), the nature of the GM plant, and the environment in which exposure is likely. Initially, this is a mental exercise or an abbreviated assessment. Experience with both GM and non-GM plants helps to identify the potentially meaningful problems. No single PF is likely to address every concern; rather, each concern that is eventually deemed relevant to the GM plant will be subject to a specific PF within the ERA.
The degree to which concerns are addressed within a given assessment (such as a regulatory dossier) will likely vary from case to case. Many concerns or questions of risk may be readily answered on the basis of prior knowledge and this prior knowledge may rule out some scenarios as insubstantial. For instance, for maize planted in the European Union, potential harm resulting from pollen-mediated gene flow to a sexually compatible wild relative is not a problem that requires analysis, due to the absence of wild relatives. The degree to which the ERA formally poses hypotheses and tests them with prior data varies depending on how and by whom the risk assessment will be used.
Many of the concerns included in the problem definition for a GM plant are general to all ERAs, and descriptions may be fou
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
การกำหนด
ปัญหานามธรรมเป็นขั้นตอนแรกของการประเมินความเสี่ยงด้านสิ่งแวดล้อม ( ยุค ) ซึ่งนโยบายเป้าหมาย ขอบเขต ข้อมูลการประเมินและวิธีการกลั่นที่ระบุไว้อย่างชัดเจน ปัญหา และแนวทางในการวิเคราะห์ ความสอดคล้องและอรรถประโยชน์ของยุคสมัยที่ดัดแปลงพันธุกรรม ( GM ) พืชที่สามารถปรับปรุงผ่านการกำหนดปัญหาที่เคร่งครัด ( PF )การผลิต การวิเคราะห์สถานการณ์ การวางแผนที่อธิบายที่เกี่ยวข้อง และผลกระทบที่อาจเกิดขึ้นของสถานการณ์เหล่านี้ ถูกประหารชีวิต PF มั่นใจความเกี่ยวข้องของยุคผลลัพธ์ของการตัดสินใจ การผสมผสานแนวทางการกำหนดปัญหาจะมากขึ้นความสม่ำเสมอในกระบวนการ ( gmt ) พืชในยุคระบอบกฎหมายทั่วโลก This paper is the product of an international expert group convened by the International Life Sciences Institute (ILSI) Research Foundation.
Keywords: Ecological risk assessment, GMO, Genetically engineered, Hazard identification
Introduction
Risk assessment is widely used in decision-making concerning the release of genetically modified (GM) plants into the environment (EFSA 2006).กระบวนการบูรณาการโอกาสและผลกระทบของความเสี่ยงในแง่ร้าย เป็นพื้นฐานของการประเมินความเสี่ยงด้านสิ่งแวดล้อม ( ยุค ) เป็นขั้นตอนแรกในยุค ปัญหาการกำหนด ( PF ) กำหนดพารามิเตอร์ที่มีความเกี่ยวข้องมากที่สุด ผลการประเมิน
หลากหลายชาติ ภูมิภาค และแนวทางระหว่างประเทศในยุคของพืชจีเอ็มจะเกิดขึ้นใหม่ ( เนิน 2005 )และเหล่านี้มีศัพท์เรียกต่างกัน กฎหมาย และแนวทางเกี่ยวกับวิธีการประเมินจะต้องดำเนินการ ความแตกต่างชัดเจนระหว่างโปรโตคอลการประเมินต่าง ๆ ที่ของพวกเขาที่คล้ายกัน หลักการพื้นฐานของกรณีเปรียบเทียบ ประเมินความเสี่ยง Clarifying these underlying principles can lead to clearer assessments and improved communication among interested and affected parties. Recognizing common principles for PF will encourage harmonized approaches for risk assessment and may help less developed countries to formulate effective and relevant biosafety regulations for GM plants.
This paper proposes a common PF framework for environmental risk assessment of GM plants (Fig. 1). The framework does the following: (i) it provides a common language for the evaluation and communication of similarities and differences among various assessment regimens (see box—Glossary of Terms);( 2 ) มัน affords ความยืดหยุ่นที่จำเป็นสำหรับวิวัฒนาการต่อไปและการปรับปรุงการประเมินและการประสานกันของพวกเขา ; ( iii ) มันมีแม่แบบสำหรับการประเมินสิ่งแวดล้อมที่อาจจะใช้ในชาติเกิดใหม่หรือคำแนะนำกฎระเบียบในภูมิภาค และ ( 4 ) สอดคล้องกับหลักการที่ระบุไว้ในอนุสัญญาระหว่างประเทศ เช่น พิธีสารว่าด้วยความปลอดภัยทางชีวภาพ ( http://www.cbd .int / ความปลอดภัย / โปรโตคอล shtml ) และมาตรฐานสุขอนามัยพืชของอนุสัญญาอารักขาพืชระหว่างประเทศ ( สำนักงาน 2001 ) ยุคกระบวนทัศน์ที่อธิบายโดยหน่วยงานคุ้มครองสิ่งแวดล้อมสหรัฐอเมริกา ( EPA ) ( กำหนด 1992 , 1998 ) ได้ถูกใช้โดยผู้เขียนเป็นแนวคิดและกระบวนการพื้นฐานสำหรับกรอบและศัพท์ทั่วไปที่สามารถใช้กับยุคสำหรับพืชจีเอ็ม
เป็น PF ไม่เพียงพออาจประนีประนอมยุคทั้งหมด และเพิ่มระดับของความไม่แน่นอนในการตัดสินใจต่อไป ผลของความล้มเหลวของประเภทนี้บ่อย ๆต่อเนื่อง ขอข้อมูลเพิ่มเติม มาตรการบรรเทาความเสี่ยงมหาศาลและ miscommunication ที่พบความเสี่ยง ผลนี้ในการเพิ่มความกังวลเกี่ยวกับผลกระทบต่อสิ่งแวดล้อม ( จอห์นสัน et al . 2007 ; Raybould 2006) and leads to delayed decision-making. Some authors contend that such delays may lead to increased negative environmental impacts because of the consequent delays in the introduction of environmentally beneficial products (Raybould 2006, 2007). Additionally,ยุคที่มีการพัฒนางาน PF อาจจะไม่เพียงพอที่จะระบุหรือการแสดงออกที่ไม่เหมาะสมของมูลค่าสิ่งแวดล้อมเพื่อปกป้องผลประโยชน์ รวมถึงกระบวนการที่ผลิตทรัพยากรสิ่งแวดล้อม ) หรือขาดความชัดเจนเกี่ยวกับวัตถุประสงค์และการใช้ข้อมูลที่ถูกเก็บรวบรวม รายงานนี้นำเสนอกรอบสำหรับการสร้าง pfs ที่สามารถใช้กับยุคสำหรับพืชจีเอ็ม
Go to:
Problem formulation framework
The first step in ERA is problem formulation (USEPA 1998), which has also been referred to as hazard identification (Hill 2005; OECD 2003). We use the term problem formulation because it better reflects the broad base of information regarding the type and nature of potential adverse effects considered in an ERA for GM plants.กรอบทั่วไปสำหรับ PF ที่อธิบายไว้ในส่วนนี้ และแสดงในรูปที่ 1 การที่กรณีและธรรมชาติเปรียบเทียบยุคสำหรับพืชจีเอ็มมีหลายแง่มุมของปัญหาถูกหล่อหลอมโดยพิจารณาเฉพาะกรณี ดังรายละเอียดในการพัฒนา ปัญหาการกำหนดที่หลักของกระบวนการทำให้เป็นสถานประกอบการของพารามิเตอร์ของยุค ( บริบทปัญหา ) และระบุความเสี่ยงที่ยิ่งใหญ่ที่สุด Ltd ( การนิยามปัญหา ปัญหา

บริบทบริบทปัญหาสำหรับการประเมินความเสี่ยงสะท้อนค่านิยมมาจากกว้างสิ่งแวดล้อมนโยบายและเป้าหมายที่มีความเสี่ยงโดยตรง การวิเคราะห์ Establishing the problem context sets the parameters for the risk assessment, including; protection goals, environmental scope, standard assessment endpoints (Suter 2000), and assessment methodology (see Glossary of Terms for definitions). In addition,
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2025 I Love Translation. All reserved.

E-mail: