Standard “Four-Step” Travel Demand Modeling Process Description
In a travel demand model, traffic volumes are forecast through the interaction of transportation supply and demand. Traffic zones are areas that represent demand, while the actual road network represents supply. A computerized network consists of a series of points, or nodes, that graphically show locations of roadway intersections and other elements of the network. Connections between nodes are called links. Links represent highway segments and contain information such as speed and road capacity. Traffic zones contain demographic and employment information, and are represented by special nodes called centroids. Each zone is attached, or "loaded," onto the network by specialized links called centroid connectors. Traffic outside the modeled area is represented by special centroids called external stations. These stations allow for the interaction of traffic flow between the region and the "outside world", while the interaction between all internal and external zones produces the actual traffic volume results for the entire region.
The interaction among traffic zones occurs because each zone produces and attracts person trips. Information contained within each zone (such as population, households, and employment) determines the amount of trips produced and attracted. Households are the primary producer of trips, while employment sites are the primary trip attractors. These productions and attractions are converted to vehicle trips that enter and leave each zone. The fact that people make trips for different purposes (work, shopping, school, personal business, recreation, etc.) - and have different vehicle occupancy rates in doing so - is also calculated into the model. This entire process is called trip generation.
The process of trip distribution determines where the trips end up once they leave their traffic zones. Trip distribution produces a matrix of origins and destinations between all zones for each trip purpose. This is done according to the "attractiveness" of a zone, based on its proximity to other zones and on the total number of trips generated in that zone. Zones that are closest to each other will have more trips flowing between them, all other things being equal. The more trips a zone generates relative to all other zones, the greater the "pull" it will exert on all other zones in terms of attracting trips. This is the basic theory behind the gravity model, which is often used in travel demand forecasting.
For all trips between zones, mode choice refers to the relative proportions that use each particular mode of transportation, mainly auto, transit, bicycle, walking, etc. This step can be fairly simplistic or very detailed, depending on the complexity of the network and the number of transportation options available in a given area. For example, “nested” models can account for a wider variety of mode choices, including whether people drive alone or carpool, and what specific type of transit they take (bus, subway, commuter rail, ferry). The mode choice step is often done through multiple iterations of trip distribution and assignment as part of a feedback loop.
Trip assignment determines what route, or path, trips will take in going from zone to zone. This is where the travel demand of the traffic zones interacts with the supply, provided by the road and transit systems. All trips from all zones are assigned along the network to all their destination zones. From this point, there are several different methods of trip assignment. In one such method, each individual path is determined through factors such as minimum travel time (determined by the speed, capacity and intersection delays of the utilized links), and congestion that would arise from too many vehicles using a particular link or route. The end result produces traffic volumes for all roads in the network.
Once a model produces traffic volumes, it must be calibrated. Calibration refers to the adjusting of various model factors and components - and running the model again until it replicates current travel patterns and traffic volumes at acceptable levels of accuracy. Adjustments and subsequent model runs must often be conducted many times before acceptable results are reached. Once the model is calibrated to current conditions, it can then be used to forecast future scenarios. Calibration of a travel demand model is often a continuing process in order to achieve results that are more accurate and to keep pace
Standard “Four-Step” Travel Demand Modeling Process Description
In a travel demand model, traffic volumes are forecast through the interaction of transportation supply and demand. Traffic zones are areas that represent demand, while the actual road network represents supply. A computerized network consists of a series of points, or nodes, that graphically show locations of roadway intersections and other elements of the network. Connections between nodes are called links. Links represent highway segments and contain information such as speed and road capacity. Traffic zones contain demographic and employment information, and are represented by special nodes called centroids. Each zone is attached, or "loaded," onto the network by specialized links called centroid connectors. Traffic outside the modeled area is represented by special centroids called external stations. These stations allow for the interaction of traffic flow between the region and the "outside world", while the interaction between all internal and external zones produces the actual traffic volume results for the entire region.
The interaction among traffic zones occurs because each zone produces and attracts person trips. Information contained within each zone (such as population, households, and employment) determines the amount of trips produced and attracted. Households are the primary producer of trips, while employment sites are the primary trip attractors. These productions and attractions are converted to vehicle trips that enter and leave each zone. The fact that people make trips for different purposes (work, shopping, school, personal business, recreation, etc.) - and have different vehicle occupancy rates in doing so - is also calculated into the model. This entire process is called trip generation.
The process of trip distribution determines where the trips end up once they leave their traffic zones. Trip distribution produces a matrix of origins and destinations between all zones for each trip purpose. This is done according to the "attractiveness" of a zone, based on its proximity to other zones and on the total number of trips generated in that zone. Zones that are closest to each other will have more trips flowing between them, all other things being equal. The more trips a zone generates relative to all other zones, the greater the "pull" it will exert on all other zones in terms of attracting trips. This is the basic theory behind the gravity model, which is often used in travel demand forecasting.
For all trips between zones, mode choice refers to the relative proportions that use each particular mode of transportation, mainly auto, transit, bicycle, walking, etc. This step can be fairly simplistic or very detailed, depending on the complexity of the network and the number of transportation options available in a given area. For example, “nested” models can account for a wider variety of mode choices, including whether people drive alone or carpool, and what specific type of transit they take (bus, subway, commuter rail, ferry). The mode choice step is often done through multiple iterations of trip distribution and assignment as part of a feedback loop.
Trip assignment determines what route, or path, trips will take in going from zone to zone. This is where the travel demand of the traffic zones interacts with the supply, provided by the road and transit systems. All trips from all zones are assigned along the network to all their destination zones. From this point, there are several different methods of trip assignment. In one such method, each individual path is determined through factors such as minimum travel time (determined by the speed, capacity and intersection delays of the utilized links), and congestion that would arise from too many vehicles using a particular link or route. The end result produces traffic volumes for all roads in the network.
Once a model produces traffic volumes, it must be calibrated. Calibration refers to the adjusting of various model factors and components - and running the model again until it replicates current travel patterns and traffic volumes at acceptable levels of accuracy. Adjustments and subsequent model runs must often be conducted many times before acceptable results are reached. Once the model is calibrated to current conditions, it can then be used to forecast future scenarios. Calibration of a travel demand model is often a continuing process in order to achieve results that are more accurate and to keep pace
การแปล กรุณารอสักครู่..

มาตรฐาน " สี่ขั้น " แบบจำลองความต้องการเดินทาง
อธิบายกระบวนการในแบบจำลองความต้องการเดินทาง ปริมาณการจราจรที่คาดว่าผ่านการปฏิสัมพันธ์ของการจัดหาการขนส่งและความต้องการ โซนการจราจรพื้นที่ที่เป็นตัวแทนของความต้องการในขณะที่เครือข่ายถนนจริง หมายถึง อุปทาน ระบบเครือข่ายคอมพิวเตอร์ประกอบด้วยชุดของจุดหรือโหนที่กราฟิกแสดงตำแหน่งของจุดตัดถนนและองค์ประกอบอื่น ๆของเครือข่าย การเชื่อมต่อระหว่างโหนดจะเรียกว่าการเชื่อมโยง ส่วนการเชื่อมโยงของทางหลวงและมีข้อมูลเช่นความเร็วและความจุ โซนจราจรประกอบด้วยข้อมูลและการจ้างงาน และจะแสดงโดยพิเศษจุดที่เรียกว่าจุดเซนทรอยด์ แต่ละโซนจะแนบ หรือ " โหลด" ลงในเครือข่ายโดยการเชื่อมโยงเฉพาะเรียกว่าเซนทรอยด์ เชื่อมต่อ แบบจำลองการจราจรภายนอกพื้นที่ แทนด้วยจุดเซนทรอยด์พิเศษที่เรียกว่าสถานีภายนอก สถานีเหล่านี้อนุญาตให้มีการปฏิสัมพันธ์ของการไหลของการจราจรระหว่างภูมิภาคและ " โลก " ภายนอก ในขณะที่ปฏิสัมพันธ์ระหว่างพื้นที่ภายในและภายนอกทั้งหมด ผลิต จริง ปริมาณผล
ภูมิภาคทั้งหมดปฏิสัมพันธ์ระหว่างเขตจราจรเกิดขึ้นเพราะแต่ละโซนสร้างและดึงดูดคนเดินทาง ข้อมูลที่อยู่ภายในแต่ละโซน เช่น ประชากร ครัวเรือน และการจ้างงาน ) กําหนดจํานวนการเดินทางผลิตและดูด ครอบครัวเป็นผู้ผลิตหลักของการเดินทาง ในขณะที่เว็บไซต์การจ้างงานเป็น ตัวดึงดูดการเดินทางหลักการผลิตเหล่านี้และสถานที่จะแปลงเป็นพาหนะการเดินทางที่เข้าออกในแต่ละโซน ความจริงที่ว่าผู้คนให้เดินทางเพื่อวัตถุประสงค์ต่าง ๆ ( งาน , ช้อปปิ้ง , โรงเรียน , ธุรกิจ , นันทนาการ ฯลฯ ส่วนตัว ) และมีอัตราที่แตกต่างกันในรถ มาเป็นค่าในรูปแบบ กระบวนการทั้งหมดนี้เรียกว่า
รุ่นเที่ยวกระบวนการของการกำหนดทริปการเดินทางที่สิ้นสุดเมื่อพวกเขาออกจากพื้นที่การจราจรของพวกเขา การกระจายการเดินทางสร้างเมทริกซ์ของกำเนิดและสถานที่ระหว่างทุกโซนสำหรับการเดินทางแต่ละจุดประสงค์ นี้จะกระทำตาม " เสน่ห์ " ของโซนที่อยู่ใกล้ชิดกับโซนอื่น และจำนวนเที่ยวที่สร้างขึ้นในเขตที่โซนที่ใกล้กันจะได้มากกว่าการเดินไหลระหว่างพวกเขา , ทุกสิ่งเป็นเท่ากับ ยิ่งทริปโซนสร้างสัมพันธ์กับโซนอื่นทั้งหมด ยิ่ง " ดึง " มันจะออกแรงในโซนอื่น ๆทั้งหมดในแง่ของการดึงดูดการเดินทาง นี่คือพื้นฐานทฤษฎีแรงโน้มถ่วงแบบหลัง ซึ่งมักจะใช้ในการพยากรณ์ความต้องการในการเดินทาง สำหรับทริป
ระหว่างโซนโหมดเลือก หมายถึง เทียบสัดส่วนที่ใช้แต่ละโหมดเฉพาะของการขนส่ง ส่วนใหญ่รถยนต์ , การขนส่ง , บริการ , เดิน , ฯลฯ ขั้นตอนนี้จะค่อนข้างง่ายหรือมีรายละเอียดมาก ขึ้นอยู่กับความซับซ้อนของเครือข่ายและจำนวนของตัวเลือกการขนส่งที่มีอยู่ในพื้นที่ที่กําหนด . ตัวอย่างเช่น " ซ้อน " รุ่นสามารถบัญชีสำหรับความหลากหลายกว้างของตัวเลือกโหมดรวมถึงว่าคนที่ขับคนเดียวหรือ Carpool , และสิ่งที่พวกเขาใช้เฉพาะประเภทของการขนส่ง ( รถบัส , รถไฟใต้ดิน , กระแสไฟฟ้ารถไฟเรือเฟอร์รี่ ) โหมดการเลือกขั้นตอนที่มักจะทำผ่านหลายรอบของการกระจายการเดินทางและการทำงานเป็นส่วนหนึ่งของความคิดเห็นลูป .
งานเดินทางกำหนดเส้นทางไหน หรือเส้นทางการเดินทางจะใช้เวลาในโซนเริ่มจากโซนนี่คือที่ความต้องการเดินทางของการจราจร เขตติดต่อกับ อุปทาน โดยระบบถนนและขนส่ง ทริปทั้งหมดจากทุกโซนที่ได้รับมอบหมายตามเครือข่ายโซนปลายทาง ทั้งหมดของพวกเขา จากจุดนี้ มีหลายวิธีที่แตกต่างกันของการเดินทาง ในเช่นวิธีหนึ่งแต่ละเส้นทางแต่ละถูกกำหนดโดยปัจจัยเช่นเวลาเดินทางขั้นต่ำ ( กำหนดโดยความเร็ว ความจุ และแยกความล่าช้าของใช้ลิงค์ ) และปัญหาที่จะเกิดขึ้นจากยานพาหนะมากเกินไปโดยใช้การเชื่อมโยงเฉพาะหรือเส้นทาง สิ้นผลผลิตปริมาณการจราจรในถนนทุกสายในเครือข่าย .
เมื่อรูปแบบผลิตปริมาณการจราจรจะต้องมีขนาดการอ้างถึงการปรับองค์ประกอบรูปแบบต่างๆและส่วนประกอบและการทํางานแบบอีกครั้งจนมันซ้ำรูปแบบการเดินทางในปัจจุบันและปริมาณการจราจรในระดับที่ยอมรับของความถูกต้อง การปรับรุ่นที่ตามมาวิ่งมักจะต้องดำเนินการหลายครั้งก่อนที่ผลที่ยอมรับได้เป็นถึง เมื่อรูปแบบการปรับสภาพปัจจุบันมันสามารถถูกใช้เพื่อการคาดการณ์สถานการณ์ในอนาคต การปรับเทียบแบบจำลองความต้องการเดินทางมักต่อเนื่องเพื่อให้ได้ผลลัพธ์ที่ถูกต้องมากขึ้น และเพื่อให้ทัน
การแปล กรุณารอสักครู่..
