2.3. Baking performance testBaking performance test was conducted usin การแปล - 2.3. Baking performance testBaking performance test was conducted usin ไทย วิธีการพูด

2.3. Baking performance testBaking

2.3. Baking performance test
Baking performance test was conducted using a Rheofermentometer F3 (CHOPIN, France). A portion of 250 g of dough was fermented for 3 h at 28.5 C with 2 kg of weight over it according to the Chopin protocol.
From the test two curves were obtained: the dough development curve by an optical sensor, which shows the variation of dough height as a function of time during fermentation; and the gas production and retention curves by a pressure sensor. The following parameters were obtained from the dough development curve: maximum height (Hm), time at maximum height (t1), final height (h) and the weakening coefficient (W) calculated according to Eq. (1):
W ¼ ðHm hÞ100 (1)
Hm
From the gas curves (production and retention of gas as a function of time), the following parameters were obtained: maximum pressure (Hm0 ), time at maximum pressure (t10 ), time at gas release (tx), total volume of gas produced (Vt), volume of gas retained (Vr) and the retention coefficient (R) calculated as Eq. (2):
Vr
R ¼ 100 (2)
Vt
An additional parameter, adjusted maximum height (Hmadj), was calculated (Eq. (3)) in order to identify the dough development independently from gas production which depends on the yeast activity instead of dough properties:
Hmadj ¼ H m Vt0 (3) Vt wherein Vt0 is the total volume of gas obtained from control dough.
2.4. Uniaxial extension tests
Uniaxial extension tests were performed using a TA.XTplus Texture Analyser (SMS, UK) equipped with the accessory Kieffer Dough & Gluten Extensibility Rig and following the protocol described by the manufacturer (SMS, 1995).
The mold was covered with a thin layer of mineral oil and Teflon strips were placed in the mold to aid sample removal. Immediately after kneading, a portion of dough was pressed in the mold, the excess was trimmed, then the mold was closed and placed in a plastic bag to rest for 45 min at 25 C. The dough strips in the three first and last positions were discarded and the remaining strips (at least 7 for each formulation) were submitted to the uniaxial extension under the following conditions: pre-test speed 2 mm/s, test speed 3.3 mm/s, post-test speed 10 mm/s, distance 75 mm and trigger type auto of 0.2 N. From forceetime curve the resistance to extension (Rext) was the maximum force recorded during the test and the extensibility (E) was the distance traveled by the rig at maximum force.
2.5. Large deformation mechanical tests
The large deformation mechanical tests were conducted to evaluate the machinability of the dough by TPA (Texture Profile Analysis) and dough stickiness determinations.
The TPA was conducted in TA.XTplus Texture Analyser (SMS, UK) using a 45 mm diameter aluminum probe (P/45) according to the following procedure: after resting for 15 min after kneading, a portion of dough was sheeted to 8 mm thickness and cut into discs of 55 mm diameter. At least 5 discs of each formulation were tested and compressed up to 60% of their original height at 1 mm/s and the time between compressions was 75 s as established by Armero and Collar (1997).
Parameters such as hardness (H), resilience (Res), cohesiveness (C), springiness (S), and adhesiveness (Ad) were calculated from the TPA curves using the software Exponent (SMS, UK).
The dough stickiness was determined using the same Texture Analyzer equipped with the CheneHoseney Dough Stickiness Rig, following the manufacturer's protocol (SMS, 1995). After kneading, the dough samples were placed in the rig, extruded through 1 mm diameter holes and covered with a Perspex lid to avoid moisture loss. Dough was compressed once with a Perspex probe of 25 mm diameter (P/25P) moving at 0.5 mm/s until the force achieved 0.39 N, then the probe was held for 0.1 s and finally removed from the sample at 10 mm/s. The maximum force necessary to remove the probe from the surface of the dough sample is an indirect measurement of stickiness. The work of adhesion, which is the area under the curve of force as a function of time, corresponds to the energy necessary to unstick the probe from the dough surface and the cohesiveness is the probe displacement until losing contact with the dough surface. The test was performed in four replicates, at least for each formulation.
2.6. Bread quality
2.6.1. Bread making
Dough was produced in a bakery mixer model ALS 25 (Supremax, Brazil). Dry ingredients corresponding to 1 kg of (WF þ RS) mixture were homogenized for 1 min at low speed. Then water was gradually added and mixed during 2 min. After that, salt was added and ingredients were mixed at low speed for 1 min, followed by kneading at high speed for 12 min. Finally dough was left to rest for 15 min and cut into portions of 700 g that were placed into pans previously covered with oil. For each formulation, two pans were placed in the fermentation camera (Degania, Italy) at 32 C for 90 min. After this time, bread was baked in an electrical oven (Degania, Italy) at 180 C with lidded pans for 25 min and without the lids for further 5 min. Loaves were left to cool for at least 1 h before they were packed in plastic bags and stored at room temperature until analyses, which were performed the following day except for crumb firmness which was performed 2, 4 and 7 days after baking.
2.6.2. Specific volume
The volume of the produced loaves was measured by rapeseeds displacement according to the AACC 10-05 method (2000), using bread volumeter equipment (Chopin, France), previously calibrated, and the volume was read in triplicate. Two loaves of each formulation were tested. Specific volume of the loaves was calculated from the measured volume and weight, obtained by direct measure.
2.6.3. Crumb firmness
Crumb firmness was determined using the TA.XTplus Texture Analyser (SMS, UK), according to the method AACC 74-09 (2000). Slices (25 mmethickness) were compressed with a 36 mm diameter probe (P/36R) at a speed of 100 mm/min until a deformation of 40% was reached. The force measured at 25% of deformation was recorded as the firmness of the material, according to the method. The test was performed in triplicates and after three different times of storage (2, 4 and 7 days) to study bread aging.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
2.3. Baking performance testBaking performance test was conducted using a Rheofermentometer F3 (CHOPIN, France). A portion of 250 g of dough was fermented for 3 h at 28.5 C with 2 kg of weight over it according to the Chopin protocol.From the test two curves were obtained: the dough development curve by an optical sensor, which shows the variation of dough height as a function of time during fermentation; and the gas production and retention curves by a pressure sensor. The following parameters were obtained from the dough development curve: maximum height (Hm), time at maximum height (t1), final height (h) and the weakening coefficient (W) calculated according to Eq. (1):W ¼ ðHm hÞ100 (1)HmFrom the gas curves (production and retention of gas as a function of time), the following parameters were obtained: maximum pressure (Hm0 ), time at maximum pressure (t10 ), time at gas release (tx), total volume of gas produced (Vt), volume of gas retained (Vr) and the retention coefficient (R) calculated as Eq. (2):VrR ¼ 100 (2)VtAn additional parameter, adjusted maximum height (Hmadj), was calculated (Eq. (3)) in order to identify the dough development independently from gas production which depends on the yeast activity instead of dough properties:Hmadj ¼ H m Vt0 (3) Vt wherein Vt0 is the total volume of gas obtained from control dough.2.4. Uniaxial extension testsUniaxial extension tests were performed using a TA.XTplus Texture Analyser (SMS, UK) equipped with the accessory Kieffer Dough & Gluten Extensibility Rig and following the protocol described by the manufacturer (SMS, 1995).The mold was covered with a thin layer of mineral oil and Teflon strips were placed in the mold to aid sample removal. Immediately after kneading, a portion of dough was pressed in the mold, the excess was trimmed, then the mold was closed and placed in a plastic bag to rest for 45 min at 25 C. The dough strips in the three first and last positions were discarded and the remaining strips (at least 7 for each formulation) were submitted to the uniaxial extension under the following conditions: pre-test speed 2 mm/s, test speed 3.3 mm/s, post-test speed 10 mm/s, distance 75 mm and trigger type auto of 0.2 N. From forceetime curve the resistance to extension (Rext) was the maximum force recorded during the test and the extensibility (E) was the distance traveled by the rig at maximum force.2.5. Large deformation mechanical testsThe large deformation mechanical tests were conducted to evaluate the machinability of the dough by TPA (Texture Profile Analysis) and dough stickiness determinations.The TPA was conducted in TA.XTplus Texture Analyser (SMS, UK) using a 45 mm diameter aluminum probe (P/45) according to the following procedure: after resting for 15 min after kneading, a portion of dough was sheeted to 8 mm thickness and cut into discs of 55 mm diameter. At least 5 discs of each formulation were tested and compressed up to 60% of their original height at 1 mm/s and the time between compressions was 75 s as established by Armero and Collar (1997).Parameters such as hardness (H), resilience (Res), cohesiveness (C), springiness (S), and adhesiveness (Ad) were calculated from the TPA curves using the software Exponent (SMS, UK).The dough stickiness was determined using the same Texture Analyzer equipped with the CheneHoseney Dough Stickiness Rig, following the manufacturer's protocol (SMS, 1995). After kneading, the dough samples were placed in the rig, extruded through 1 mm diameter holes and covered with a Perspex lid to avoid moisture loss. Dough was compressed once with a Perspex probe of 25 mm diameter (P/25P) moving at 0.5 mm/s until the force achieved 0.39 N, then the probe was held for 0.1 s and finally removed from the sample at 10 mm/s. The maximum force necessary to remove the probe from the surface of the dough sample is an indirect measurement of stickiness. The work of adhesion, which is the area under the curve of force as a function of time, corresponds to the energy necessary to unstick the probe from the dough surface and the cohesiveness is the probe displacement until losing contact with the dough surface. The test was performed in four replicates, at least for each formulation.2.6. Bread quality2.6.1. Bread makingDough was produced in a bakery mixer model ALS 25 (Supremax, Brazil). Dry ingredients corresponding to 1 kg of (WF þ RS) mixture were homogenized for 1 min at low speed. Then water was gradually added and mixed during 2 min. After that, salt was added and ingredients were mixed at low speed for 1 min, followed by kneading at high speed for 12 min. Finally dough was left to rest for 15 min and cut into portions of 700 g that were placed into pans previously covered with oil. For each formulation, two pans were placed in the fermentation camera (Degania, Italy) at 32 C for 90 min. After this time, bread was baked in an electrical oven (Degania, Italy) at 180 C with lidded pans for 25 min and without the lids for further 5 min. Loaves were left to cool for at least 1 h before they were packed in plastic bags and stored at room temperature until analyses, which were performed the following day except for crumb firmness which was performed 2, 4 and 7 days after baking.2.6.2. Specific volumeThe volume of the produced loaves was measured by rapeseeds displacement according to the AACC 10-05 method (2000), using bread volumeter equipment (Chopin, France), previously calibrated, and the volume was read in triplicate. Two loaves of each formulation were tested. Specific volume of the loaves was calculated from the measured volume and weight, obtained by direct measure.2.6.3. Crumb firmnessCrumb firmness was determined using the TA.XTplus Texture Analyser (SMS, UK), according to the method AACC 74-09 (2000). Slices (25 mmethickness) were compressed with a 36 mm diameter probe (P/36R) at a speed of 100 mm/min until a deformation of 40% was reached. The force measured at 25% of deformation was recorded as the firmness of the material, according to the method. The test was performed in triplicates and after three different times of storage (2, 4 and 7 days) to study bread aging.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
2.3 การทดสอบประสิทธิภาพการอบเบเกอรี่การทดสอบประสิทธิภาพได้ดำเนินการโดยใช้ Rheofermentometer F3 (โชแปงฝรั่งเศส)
เป็นส่วนหนึ่งของ 250 กรัมแป้งถูกหมักเป็นเวลา 3 ชั่วโมงที่ 28.5 C มี 2 กิโลกรัมของน้ำหนักมากกว่านั้นตามโปรโตคอลโชแปง.
จากการทดสอบสองเส้นโค้งที่ได้รับ: โค้งพัฒนาแป้งโดยเซ็นเซอร์แสงซึ่งแสดงให้เห็นการเปลี่ยนแปลงของ ความสูงของแป้งเป็นหน้าที่ของเวลาในการหมัก; และการผลิตก๊าซและเส้นโค้งการเก็บรักษาโดยเซ็นเซอร์ความดัน พารามิเตอร์ต่อไปนี้ที่ได้รับจากเส้นโค้งการพัฒนาแป้ง: ความสูงสูงสุด (อืม) ครั้งที่ความสูงสูงสุด (t1) สูงสุดท้าย (ซ) และค่าสัมประสิทธิ์การอ่อนตัวลง (W) คำนวณตามสมการ (1):
W ¼ DHM hÞ100 (1)
อืมจากเส้นโค้งก๊าซ (การผลิตและการเก็บรักษาของก๊าซเป็นหน้าที่ของเวลา), พารามิเตอร์ต่อไปนี้ที่ได้รับ: ความดันสูงสุด (Hm0) เวลาที่ความดันสูงสุด (T10) เวลา ที่ปล่อยก๊าซ (TX) ปริมาณรวมของก๊าซที่ผลิต (VT) ปริมาณของก๊าซสะสม (Vr) และค่าสัมประสิทธิ์การเก็บรักษา (R) คำนวณเป็นสมการ
(2):
Vr
R ¼ 100 (2)
Vt
พารามิเตอร์เพิ่มเติมปรับความสูงสูงสุด (Hmadj) ที่คำนวณได้ (สมการ (3).) เพื่อที่จะระบุการพัฒนาแป้งเป็นอิสระจากการผลิตก๊าซซึ่งขึ้นอยู่กับกิจกรรมยีสต์แทน คุณสมบัติของแป้ง:
Hmadj ¼ H เมตร Vt0 (3) Vt นั้น Vt0 เป็นปริมาณรวมของก๊าซที่ได้จากแป้งควบคุม.
2.4 ขยายแกนเดียวทดสอบการทดสอบขยายแกนเดียวได้รับการดำเนินการโดยใช้เนื้อ TA.XTplus วิเคราะห์ (SMS สหราชอาณาจักร) พร้อมกับอุปกรณ์เสริม Kieffer แป้งและตัง Rig ขยายและต่อไปนี้โปรโตคอลที่อธิบายไว้โดยผู้ผลิต (SMS, 1995). แม่พิมพ์ที่ถูกปกคลุมไปด้วย ชั้นบาง ๆ ของน้ำมันแร่และแถบเทฟลอนถูกวางไว้ในรูปแบบที่จะช่วยให้การกำจัดตัวอย่าง ทันทีหลังจากที่การนวดส่วนของแป้งถูกกดในแม่พิมพ์, ส่วนเกินที่ถูกตัดแล้วแม่พิมพ์ถูกปิดและวางไว้ในถุงพลาสติกในส่วนที่เหลือเป็นเวลา 45 นาทีที่ 25 องศาเซลเซียสแผ่นแป้งในสามตำแหน่งแรกและครั้งสุดท้ายได้ ทิ้งและแถบที่เหลืออยู่ (อย่างน้อย 7 สำหรับแต่ละสูตร) ​​ที่ถูกส่งไปยังส่วนขยายแกนเดียวภายใต้เงื่อนไขดังต่อไปนี้: ความเร็วในการทดสอบก่อน 2 mm / s ทดสอบความเร็ว 3.3 มิลลิเมตร / วินาทีความเร็วในการโพสต์การทดสอบ 10 มิลลิเมตร / วินาทีระยะทาง 75 มิลลิเมตรและรถยนต์ประเภททริกเกอร์ 0.2 N. จากโค้ง forceetime ต้านทานต่อขยาย (Rext) เป็นแรงสูงสุดที่บันทึกไว้ในระหว่างการทดสอบและการขยาย (E) ได้ระยะทางที่เดินทางโดยแท่นขุดเจาะที่แรงสูงสุด. 2.5 การทดสอบทางกลเสียรูปขนาดใหญ่การทดสอบเครื่องจักรกลเสียรูปขนาดใหญ่ได้ดำเนินการในการประเมินการแปรรูปของแป้งโดย TPA (การวิเคราะห์รายละเอียดของพื้นผิว) และการหาความหนืดแป้ง. TPA ได้ดำเนินการใน TA.XTplus เนื้อวิเคราะห์ (SMS, สหราชอาณาจักร) โดยใช้ขนาดเส้นผ่าศูนย์กลาง 45 มม สอบสวนอลูมิเนียม (P / 45) ตามขั้นตอนต่อไปนี้: หลังจากพักผ่อนเป็นเวลา 15 นาทีหลังจากการนวด, การเป็นส่วนหนึ่งของแป้งได้แผ่ความหนา 8 มิลลิเมตรและตัดเป็นแผ่นขนาดเส้นผ่าศูนย์กลาง 55 มม อย่างน้อย 5 แผ่นของแต่ละสูตรได้รับการทดสอบและการบีบอัดได้ถึง 60% ของความสูงเดิมของพวกเขา ณ วันที่ 1 มม / วินาทีและเวลาระหว่างการกดเป็น 75 ในฐานะที่จัดตั้งขึ้นโดยลอาและคอ (1997). พารามิเตอร์เช่นความแข็ง (H) ความยืดหยุ่น (Res) ติดกัน (C), ยืดหยุ่น (S) และเหนียวแน่น (Ad) จะถูกคำนวณจากโค้ง TPA ใช้เลขชี้กำลังซอฟแวร์ (SMS สหราชอาณาจักร). เหนียวแป้งถูกกำหนดโดยใช้การวิเคราะห์เนื้อเดียวกันพร้อมกับ CheneHoseney แป้งเหนียว Rig ตามโปรโตคอลของผู้ผลิต (SMS, 1995) หลังจากนวดตัวอย่างแป้งถูกวางไว้ในแท่นขุดเจาะที่อัดผ่าน 1 มมหลุมขนาดเส้นผ่าศูนย์กลางและปกคลุมด้วยฝา Perspex เพื่อหลีกเลี่ยงการสูญเสียความชุ่มชื้น แป้งถูกบีบอัดครั้งเดียวกับการสอบสวน Perspex 25 มิลลิเมตร (P / 25P) ย้ายที่ 0.5 มิลลิเมตร / วินาทีจนประสบความสำเร็จแรง 0.39 ไม่มีแล้วการสอบสวนจัดขึ้นเป็น 0.1 และในที่สุดก็ถูกลบออกจากตัวอย่างที่ 10 มิลลิเมตร / วินาที แรงสูงสุดจำเป็นต้องลบการสอบสวนจากพื้นผิวของตัวอย่างแป้งเป็นวัดทางอ้อมของการยึดติด การทำงานของการยึดเกาะซึ่งเป็นพื้นที่ใต้เส้นโค้งของแรงเป็นหน้าที่ของเวลาที่สอดคล้องกับพลังงานที่จำเป็นในการถอดหัววัดจากพื้นผิวแป้งและติดกันเป็นรางสอบสวนจนสูญเสียการติดต่อกับพื้นผิวแป้ง การทดสอบได้ดำเนินการในสี่ซ้ำอย่างน้อยสำหรับแต่ละสูตร. 2.6 ขนมปังที่มีคุณภาพ2.6.1 ขนมปังทำให้แป้งที่ผลิตเบเกอรี่ในเครื่องผสมแบบ ALS 25 (Supremax, บราซิล) ส่วนผสมแห้งที่สอดคล้องกับ 1 กิโลกรัม (WF þอาร์เอส) ส่วนผสมที่ถูกปั่นเป็นเวลา 1 นาทีที่ความเร็วต่ำ จากนั้นน้ำจะถูกเพิ่มเข้าและค่อยๆผสมในช่วง 2 นาที หลังจากนั้นเกลือถูกบันทึกและส่วนผสมผสมที่ความเร็วต่ำ 1 นาทีตามด้วยการนวดด้วยความเร็วสูงเป็นเวลา 12 นาที แป้งสุดท้ายถูกทิ้งให้เหลือ 15 นาทีและตัดเป็นส่วนของ 700 กรัมที่ถูกวางลงในกระทะก่อนหน้านี้ปกคลุมไปด้วยน้ำมัน สำหรับสูตรแต่ละกระทะสองถูกวางไว้ในกล้องหมัก (Degania, อิตาลี) ที่ 32 องศาเซลเซียสเป็นเวลา 90 นาที หลังจากที่เวลานี้ได้รับขนมปังอบในเตาอบไฟฟ้า (Degania, อิตาลี) ที่ 180 องศาและมีกระทะ lidded 25 นาทีและไม่มีฝาปิดสำหรับอีก 5 นาที ก้อนถูกทิ้งไว้ให้เย็นเป็นเวลาอย่างน้อย 1 ชั่วโมงก่อนที่จะถูกบรรจุในถุงพลาสติกและเก็บไว้ที่อุณหภูมิห้องจนการวิเคราะห์ซึ่งได้ดำเนินการในวันรุ่งขึ้นยกเว้นความแน่นเศษซึ่งกำลังดำเนินการ 2, 4 และ 7 วันหลังจากที่อบ. 2.6.2 . ปริมาณเฉพาะปริมาณของก้อนที่ผลิตโดยวัดจาก rapeseeds กำจัดตามวิธี AACC 10-05 (2000) โดยใช้อุปกรณ์ volumeter ขนมปัง (โชแปงฝรั่งเศส), การสอบเทียบก่อนหน้านี้และปริมาณที่ถูกอ่านในเพิ่มขึ้นสามเท่า สองก้อนแต่ละสูตรได้รับการทดสอบ ปริมาณที่เฉพาะเจาะจงของก้อนที่คำนวณได้จากปริมาณและน้ำหนักที่วัดได้โดยการวัดโดยตรง. 2.6.3 ความแน่นเศษแน่นเศษถูกกำหนดโดยใช้เนื้อ TA.XTplus วิเคราะห์ (SMS สหราชอาณาจักร) ตามวิธี AACC 74-09 นี้ (2000) ชิ้น (25 mmethickness) ถูกบีบอัดด้วย 36 มมสอบสวนเส้นผ่าศูนย์กลาง (P / 36R) ที่ความเร็ว 100 มิลลิเมตร / นาทีจนเสียรูป 40% ก็มาถึง วัดแรงที่ 25% ของการเสียรูปได้รับการบันทึกเป็นความแน่นของวัสดุที่เป็นไปตามวิธีการ การทดสอบได้ดำเนินการใน triplicates และหลังจากนั้นสามครั้งที่แตกต่างกันของการจัดเก็บ (2, 4 และ 7 วัน) เพื่อศึกษาริ้วรอยขนมปัง














การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
2.3 อบการทดสอบประสิทธิภาพการทดสอบประสิทธิภาพ
อบทดลองใช้ rheofermentometer F3 ( โชแปง , ฝรั่งเศส ) ส่วนของ 250 กรัมแป้งมาหมัก 3 H ที่ 28.5 องศาเซลเซียส น้ำหนักกว่า 2 กิโลกรัม ตามพิธีสารโชแปง .
จากการทดสอบสองเส้นโค้งที่ได้รับ : แป้งการพัฒนาเส้นโค้งโดยเซ็นเซอร์แสงซึ่งแสดงให้เห็นถึงการเปลี่ยนแปลงความสูงของแป้งเป็นฟังก์ชันของเวลาในการหมัก และผลิตก๊าซธรรมชาติ และการรักษาเส้นโค้งโดยเซ็นเซอร์ด้วย พารามิเตอร์ต่อไปนี้ได้มาจากแป้งการพัฒนาเส้นโค้ง : สูง ( HM ) เวลาที่ความสูงสูงสุด ( T1 ) ความสูง ( H ) และสุดท้าย ) ค่าสัมประสิทธิ์ ( W ) ที่คำนวณได้ตามอีคิว ( 1 ) :
w ¼ð HM H Þ 100 ( 1 ) หือ

จากแก๊สเส้นโค้ง ( การผลิตและการเก็บรักษาก๊าซเป็นฟังก์ชันของเวลา ) , พารามิเตอร์ต่อไปนี้ได้ : ความดันสูงสุด ( hm0 ) เวลาที่ความดันสูงสุด ( t10 ) เวลาที่ปล่อยก๊าซ ( TX ) , ปริมาณรวมของก๊าซที่ผลิต ( VT ) ปริมาณก๊าซสะสม ( VR ) และความคงทนในการจำ ค่าสัมประสิทธิ์สหสัมพันธ์ ( r ) ที่คำนวณได้ เช่น อีคิว ( 2 ) :

r ¼ VR 100 ( 2 )
v
เป็นพารามิเตอร์เพิ่มเติม ปรับความสูงสูงสุด ( hmadj )คํานวณ ( อีคิว ( 3 ) เพื่อศึกษาการพัฒนาแป้งอย่างอิสระจากก๊าซธรรมชาติซึ่งขึ้นอยู่กับยีสต์กิจกรรมแทนคุณสมบัติของแป้ง :
hmadj ¼ H M vt0 ( 3 ) VT นั้น vt0 เป็นปริมาณรวมของก๊าซที่ได้จากแป้งควบคุม .
2.4 . การทดสอบแรงอัดแกนเดียว
นามสกุลนามสกุลทดสอบโดยใช้เครื่องวิเคราะห์เนื้อสัมผัส ta.xtplus ( SMS ,สหราชอาณาจักร ) อุปกรณ์เสริม คีเฟอร์แป้ง&ตังขยายขุดเจาะและต่อไปนี้ขั้นตอนที่อธิบายไว้โดยผู้ผลิต ( SMS , 1995 ) .
แม่พิมพ์ถูกปกคลุมด้วยชั้นบาง ๆของน้ำมัน และแร่แผ่นเทฟล่อนอยู่ในแม่พิมพ์เพื่อช่วยเอาตัวอย่าง ทันทีหลังนวด ส่วนของแป้งก็กดในแม่พิมพ์ ส่วนที่เกินก็ตัดออกแล้วราปิด และ อยู่ในถุงพลาสติก เพื่อพักผ่อนสำหรับ 45 นาที ที่อุณหภูมิ 25 องศาเซลเซียส แป้งแผ่นใน 3 ครั้งแรก และตำแหน่งสุดท้ายคือ ยกเลิก และแถบที่เหลือ ( อย่างน้อย 7 สำหรับแต่ละสูตร ) ที่ถูกส่งไปยังนามสกุลเดียวภายใต้เงื่อนไขต่อไปนี้ : ทดสอบความเร็ว 2 mm / s ความเร็วทดสอบ . mm / s โพสต์ทดสอบความเร็ว 10 mm / s ระยะทาง 75 มิลลิเมตรประเภทที่เรียกโดยอัตโนมัติจาก 0.2 Nจาก forceetime เส้นโค้งต่อต้านการขยาย ( rext ) คือ สูงสุดที่บันทึกไว้ในระหว่างการทดสอบแรงและการยืดตัว ( E ) คือระยะทางที่เดินทาง โดยรถที่แรงสูงสุด .
2.5 ขนาดใหญ่การทดสอบการเสียรูปขนาดใหญ่ เครื่องจักรกล เครื่องจักรกล
การทดสอบมีวัตถุประสงค์เพื่อประเมิน machinability ของแป้งโดย TPA ( การวิเคราะห์รายละเอียดเนื้อแป้งเหนียวและ determinations .
ที่เข้าร่วมดำเนินการใน ta.xtplus ชำแหละเนื้อ ( SMS , UK ) ใช้ 45 มม. เส้นผ่าศูนย์กลางอลูมิเนียมโพรบ ( P / 45 ) ตามขั้นตอนดังต่อไปนี้ หลังจากพักไป 15 นาที หลังการนวด ส่วนของแป้งก็ sheeted ความหนา 8 มม. และตัดเป็นแผ่นขนาด 55 มม.
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2025 I Love Translation. All reserved.

E-mail: