Results and discussionAs shown in Scheme 1, the desired anthraquinonyl การแปล - Results and discussionAs shown in Scheme 1, the desired anthraquinonyl ไทย วิธีการพูด

Results and discussionAs shown in S


Results and discussion
As shown in Scheme 1, the desired anthraquinonyl glycoside (ZBW1) was synthesized by the Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) of azido mannoside a[16] with dipropargyl anthraquinone b[5], followed by a de-acetylation, in 66% yield. For the sensor fabrication, the compound was simply spotted to the working electrode (pre-coated with a nano-graphene (nG)) of a screen printed electrode [17]. The presence of graphene may increase the adsorption of AG onto the working electrode [18]. Comparing to the conventional gold-thiol self-assembly, the strong π-interaction between graphene and anthraquinone [5] may provide a more facile and economic means for construction of self-assembled electrochemical biosensors due to the preclusion of using gold as the sensing platform. Upon formation of the sensors, the hydrophilic glycosyl moiety could expose to the environment for lectin recognition [5].

Scheme 1
Synthesis of the target anthraquinonyl mannoside. Reagents and condition: (i) CuSO4 • H2O, Na ascorbate, CH2Cl2/H2O; (ii) Et3N, MeOH/H2O.
Voltammetry and EIS were used to monitor the sensor standardization. Three sets of electrodes with increasing current intensities (Figure 1d: 9.3 μA, Figure 1e: 15.2 μA and Figure 1f: 19.9 μA) were made by spotting ZBW1 with different concentrations to the working electrode. The surface coverage areas (Г, adsorbed AQ species) of the different electrodes were determined to be 1.1 × 10−9 (Figure 1a), 2.7 × 10−9 (Figure 1b) and 6.9 × 10−9 (Figure 1c) mol cm−2 by cyclic voltammetry [3],[5]. EIS was then used to analyze the surface adhesion of a mannose-selective lectin, Concanavalin A (Con A), using [Fe(CN)6]3-/4- as a redox probe [5]. We observed that the charge transfer resistance (Rct) of all sets of electrodes decorated with the mannoside increased evidently in the presence of Con A (Figure 1g-i), suggesting the adhesion of the lectin onto the electrode surface. This is in good agreement with previous observations [5],[11].
Figure 1. Representative electrochemical methods for the standardized detection of mannose-Con A interactions. Cyclic voltammetry (CV) of ZBW1 with a surface converge (Г) of (a) 1.1 × 10−9 mol cm−2, (b) 2.7 × 10−9 mol cm−2 and (c) 6.9 × 10−9 mol cm−2; Differential pulse voltammetry (DPV) of ZBW1 with a current intensity of(d) 9.3 μA, (e) 15.2 μA and (f) 19.9 μA; Electrochemical impedance spectroscopy (EIS) of ZBW1 with a lectin coverage efficiency (η) of (g) 34.8%, (h) 49.7%, and (i) 72.5% on graphene electrodes in the presence (colored) of Con A (10 μM) (red plots stand for ZBW1-functionalized graphene electrodes in the absence of a lectin).
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
ผลและการสนทนาดังแสดงในแผน 1, glycoside ต้อง anthraquinonyl (ZBW1) ถูกสังเคราะห์ โดย Cu (I) -azide-แอลไคน์กระบวน 1,3 dipolar cycloaddition (CuAAC) ของ azido mannoside [16] มี dipropargyl anthraquinone b [5], ตาม ด้วย acetylation ที่ชื่น 66% ผลตอบแทน สำหรับผลิตเซ็นเซอร์ บริเวณเพียงด่างถูกการไฟฟ้าทำงาน (ก่อนเคลือบ ด้วยการนาโน-graphene (nG)) ของตัวหน้าจอพิมพ์ไฟฟ้า [17] ของ graphene อาจเพิ่มการดูดซับของ AG ลงในอิเล็กโทรดทำงาน [18] เทียบกับแบบเดิมทอง thiol ตนเอง assembly π-โต้แข็งแกร่งระหว่าง graphene anthraquinone [5] อาจมีวิธีการก่อสร้างประกอบ biosensors ไฟฟ้าเนื่องจาก preclusion ใช้ทองเป็นแพลตฟอร์ม sensing ร่ม และเศรษฐกิจมากขึ้น เมื่อมีการก่อตัวของเซนเซอร์ moiety hydrophilic glycosyl สามารถเปิดเผยต่อสิ่งแวดล้อมสำหรับการศึกษา [5] แผนงาน 1การสังเคราะห์ mannoside anthraquinonyl เป้าหมาย Reagents และเงื่อนไข: (i) CuSO4 • H2O นา ascorbate, CH2Cl2/H2O (ii) Et3N ทา นอ/H2OVoltammetry และ EIS ถูกใช้ในการตรวจสอบมาตรฐานการเซ็นเซอร์ หุงตกับเพิ่มการปลดปล่อยก๊าซปัจจุบันสามชุด (รูป 1d: 9.3 μA รูปที่ 1e: 15.2 μA และรูป 1f: 19.9 μA) เกิดจากจำ ZBW1 กับความเข้มข้นแตกต่างกันกับอิเล็กโทรดทำงาน คลุมผิวด้าน (Г AQ ชนิด adsorbed) หุงตแตกต่างกันถูกกำหนดเป็น 1.1 × 10−9 (รูปที่ 1a), 2.7 × 10−9 (รูปที่ 1b) และ 6.9 × 10−9 (รูปที่ 1c) cm−2 โมล โดยวัฏจักร voltammetry [3], [5] EIS แล้วใช้ในการวิเคราะห์ยึดเกาะพื้นผิวของศึกษา mannose เลือก Concanavalin A (A คอน), ใช้ [Fe (CN) 6] 3- / 4-เป็นการ redox โพรบ [5] เราสังเกตว่า ค่าธรรมเนียมโอนต่อต้าน (Rct) หุงตชุดทั้งหมดตกแต่ง ด้วย mannoside ที่เพิ่มขึ้นอย่างเห็นได้ชัดในสถานะคอน A (รูป 1g-i), แนะนำการยึดเกาะของศึกษาบนพื้นผิวอิเล็กโทรด นี้เป็นข้อตกลงที่ดีกับสังเกตก่อนหน้านี้ [5], [11] รูปที่ 1 วิธีทางเคมีไฟฟ้าพนักงานตรวจมาตรฐานของ mannose-คอน A โต้ตอบ วัฏจักร voltammetry (CV) ของ ZBW1 กับ converge ผิว (Г) () 1.1 × 10−9 โมล cm−2, cm−2 (ข) 2.7 × 10−9 โมล และ (c) 6.9 × 10−9 โมล cm−2 ส่วนชีพจร voltammetry (DPV) ของ ZBW1 μA of(d) 9.3 ความเข้มปัจจุบัน, (e) 15.2 μA และ μA (f) 19.9 ความต้านทานไฟฟ้าก (EIS) ของ ZBW1 มีที่ศึกษาครอบคลุมประสิทธิภาพ (η) (g) 34.8%, % 49.7 (h) และ (i) 72.5% ในหุงต graphene ในสถานะ (สี) ของแอร์ (10 μM) (ผืนสีแดงยืนสำหรับหุงต graphene ZBW1 functionalized ของการศึกษา)
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!

Results and discussion
As shown in Scheme 1, the desired anthraquinonyl glycoside (ZBW1) was synthesized by the Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) of azido mannoside a[16] with dipropargyl anthraquinone b[5], followed by a de-acetylation, in 66% yield. For the sensor fabrication, the compound was simply spotted to the working electrode (pre-coated with a nano-graphene (nG)) of a screen printed electrode [17]. The presence of graphene may increase the adsorption of AG onto the working electrode [18]. Comparing to the conventional gold-thiol self-assembly, the strong π-interaction between graphene and anthraquinone [5] may provide a more facile and economic means for construction of self-assembled electrochemical biosensors due to the preclusion of using gold as the sensing platform. Upon formation of the sensors, the hydrophilic glycosyl moiety could expose to the environment for lectin recognition [5].

Scheme 1
Synthesis of the target anthraquinonyl mannoside. Reagents and condition: (i) CuSO4 • H2O, Na ascorbate, CH2Cl2/H2O; (ii) Et3N, MeOH/H2O.
Voltammetry and EIS were used to monitor the sensor standardization. Three sets of electrodes with increasing current intensities (Figure 1d: 9.3 μA, Figure 1e: 15.2 μA and Figure 1f: 19.9 μA) were made by spotting ZBW1 with different concentrations to the working electrode. The surface coverage areas (Г, adsorbed AQ species) of the different electrodes were determined to be 1.1 × 10−9 (Figure 1a), 2.7 × 10−9 (Figure 1b) and 6.9 × 10−9 (Figure 1c) mol cm−2 by cyclic voltammetry [3],[5]. EIS was then used to analyze the surface adhesion of a mannose-selective lectin, Concanavalin A (Con A), using [Fe(CN)6]3-/4- as a redox probe [5]. We observed that the charge transfer resistance (Rct) of all sets of electrodes decorated with the mannoside increased evidently in the presence of Con A (Figure 1g-i), suggesting the adhesion of the lectin onto the electrode surface. This is in good agreement with previous observations [5],[11].
Figure 1. Representative electrochemical methods for the standardized detection of mannose-Con A interactions. Cyclic voltammetry (CV) of ZBW1 with a surface converge (Г) of (a) 1.1 × 10−9 mol cm−2, (b) 2.7 × 10−9 mol cm−2 and (c) 6.9 × 10−9 mol cm−2; Differential pulse voltammetry (DPV) of ZBW1 with a current intensity of(d) 9.3 μA, (e) 15.2 μA and (f) 19.9 μA; Electrochemical impedance spectroscopy (EIS) of ZBW1 with a lectin coverage efficiency (η) of (g) 34.8%, (h) 49.7%, and (i) 72.5% on graphene electrodes in the presence (colored) of Con A (10 μM) (red plots stand for ZBW1-functionalized graphene electrodes in the absence of a lectin).
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!

Results and discussion
As shown in Scheme 1, the desired anthraquinonyl glycoside (ZBW1) was synthesized by the Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) of azido mannoside a[16] with dipropargyl anthraquinone b[5], followed by a de-acetylation, in 66% yield. For the sensor fabrication,สารประกอบที่เป็นเพียงพบเพื่อขั้วไฟฟ้าทำงาน ( ก่อนเคลือบด้วยนาโนกราฟีน ( NG ) ของหน้าจอพิมพ์ ) [ 17 ] การปรากฏตัวของกราฟีน อาจเพิ่มการดูดซับของ AG เข้าทำงาน ) [ 18 ] เปรียบเทียบกับวิธีทองขนาดต่างๆ , the strong π-interaction between graphene and anthraquinone [5] may provide a more facile and economic means for construction of self-assembled electrochemical biosensors due to the preclusion of using gold as the sensing platform. Upon formation of the sensors, the hydrophilic glycosyl moiety could expose to the environment for lectin recognition [5].

Scheme 1
การสังเคราะห์เป้าหมาย anthraquinonyl mannoside . สารเคมีและสภาพ : ( ฉัน ) CuSO4  •  h2o , h2o ชา ch2cl2 / 2 ) et3n ปริมาณแสงยูวี /
, h2o และถูกใช้เพื่อตรวจสอบการเซ็นเซอร์ของมาตรฐาน สามชุดของขั้วไฟฟ้าด้วยเพิ่มความเข้มกระแส ( รูป 1D : 9.3 μ , รูป 1e : 15.2 μและรูปที่ชั้น 1 : 199 μ ) ถูกสร้างโดยเฉพาะ zbw1 ที่มีความเข้มข้นแตกต่างกันไปในขั้วไฟฟ้าทำงาน พื้นผิวครอบคลุมพื้นที่ ( Гดูดซับ AQ , ชนิดของขั้วไฟฟ้าที่ต่างกันมีความตั้งใจจะ 1.1  ×  10 − 9 ( รูปที่ 1A ) 2.7  ×  10 − 9 ( รูป 1B ) และ 6.9  ×  10 − 9 ตัวเลข ( 1C ) mol − 2 ซม. โดยไซคลิกโวลแทมเมทรี [ 3 ] , [ 5 ] EIS แล้ววิเคราะห์พื้นผิวยึดเกาะขององค์ประกอบที่เลือกเลคติน Concanavalin A (Con A), using [Fe(CN)6]3-/4- as a redox probe [5]. We observed that the charge transfer resistance (Rct) of all sets of electrodes decorated with the mannoside increased evidently in the presence of Con A (Figure 1g-i), suggesting the adhesion of the lectin onto the electrode surface. This is in good agreement with previous observations [5],[11].
Figure 1.ตัวแทนทางเคมีไฟฟ้าวิธี การตรวจสอบมาตรฐานของแมนโนสคอน มีการโต้ตอบ ไซคลิกโวลแทมเมทรี ( CV ) ของ zbw1 กับพื้นผิวบรรจบ ( Г ) ( 1.1  ×  10 − 9 โมล cm − 2 ( ข ) 2.7  ×  10 − 9 โมล cm − 2 และ ( c ) 6.9  ×  10 − 9 โมล cm − 2 ; ค่าชีพจรแสงยูวี ( dpv ) ของ zbw1 กับ ปัจจุบันความรุนแรงของ ( D ) 9.3 μ , ( e ) และ ( F ) 15.2 μ 19.9 μ ; Electrochemical impedance spectroscopy (EIS) of ZBW1 with a lectin coverage efficiency (η) of (g) 34.8%, (h) 49.7%, and (i) 72.5% on graphene electrodes in the presence (colored) of Con A (10 μM) (red plots stand for ZBW1-functionalized graphene electrodes in the absence of a lectin).
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: