Oxidative mass losses are the most common observable losses in TGA.[9]
Studying the resistance to oxidation in copper alloys is very important. For example, NASA (National Aeronautics and Space Administration) is conducting research on advanced copper alloys for their possible use in combustion engines. However, oxidative degradation can occur in these alloys as copper oxides form in atmospheres that are rich in oxygen. Resistance to oxidation is very important because NASA wants to be able to reuse shuttle materials. TGA can be used to study the static oxidation of materials such as these for practical use.
Some researchers have been studying ways in which to protect certain oligomers or polymers from oxidation processes. One example is inserting an oligomer into a multiblock copolymer.[10] An example is the TGA traces of both the oligomer and the oligomer/multiblock copolymer in N2 and in air.[10] When the TGAs were run under a nitrogen atmosphere, there is no oxidation of the substrate. When the TGA of the oligomer was run under air, an oxidation process can be seen between 200 °C-350 °C. This process is not seen for the oligomer/multiblock copolymer. The authors of this paper explained this disappearance by suggesting that the oxidative process involved hydroxyl end groups on the oligomer. The encasing of the oligomer by the multiblock copolymer prevented this from happening.[10]