Note that these bounds apply for any number of dimensions, and Cosine similarity is most commonly used in high-dimensional positive spaces. For example, in Information Retrieval and text mining, each term is notionally assigned a different dimension and a document is characterised by a vector where the value of each dimension corresponds to the number of times that term appears in the document. Cosine similarity then gives a useful measure of how similar two documents are likely to be in terms of their subject matter.[1]
The technique is also used to measure cohesion within clusters in the field of data mining.[2]