Bacterial antibiotic resistance is widespread and presents ongoing cha การแปล - Bacterial antibiotic resistance is widespread and presents ongoing cha ไทย วิธีการพูด

Bacterial antibiotic resistance is

Bacterial antibiotic resistance is widespread and presents ongoing challenges in treating infections. A less widely known—but equally challenging—problem is antibiotic tolerance, where bacteria called persisters are not sensitive to antibiotics because the drugs’ targets are inactive in these dormant cells. Kim Lewis’s group at Northeastern University in Boston, Massachusetts, had previously shown that persisters give biofilms their drug-tolerant properties. Now, Lewis and his colleagues have eradicated a biofilm infection with a derivative of the drug acyldepsipeptide called ADEP4, and showed that it activates a protease in persister cells, causing them to self-digest. Their work was published in Nature today (November 13).

“From a treatment perspective or a translational research perspective, [this study is] probably one of the most profoundly important advances that I’ve seen in the field for more than a decade,” said Garth Ehrlich, who is a professor of microbiology and immunology at the Drexel University College of Medicine in Pennsylvania, and was not involved in the work. “This is really transformative,” he continued. “The fact that they were actually able to eradicate a biofilm infection in deep tissue is essentially unheard of.”

Based on previous work in actively dividing cells, Lewis’s team predicted that ADEP4 would activate ClpP—a protease that typically identifies and degrades misfolded proteins—in dormant persisters, too. The researchers showed that in a stationary population of methicillin-resistant Staphylococcus aureus (MRSA), treatment with ADEP4 caused widespread, non-specific degradation of proteins, suggesting that activation of ClpP led to the cells’ self-digestion. ADEP4 alone did not kill all bacterial cells, which the authors suggested is likely due to mutations in ClpP that render those cells resistant to the compound. But ClpP mutants were susceptible to other antibiotics, so combinations of ciprofloxacin or rifampicin with ADEP4 led to a decrease in S. aureus to below the level of detection in vitro, in both biofilm and stationary populations.

The ultimate test of ADEP4’s efficacy came when the scientists moved into a mouse model of chronic S. aureus biofilm infection. They showed that ADEP4 and rifampicin together eliminated the biofilm from muscle tissue of the mice to the limit of detection. “It’s a terrific weapon to kill cells,” said Lewis, and “it does an especially good job killing those that conventional antibiotics do not.”

The paper is an “important advance in therapeutics against persistent infections,” said Daniel Wozniak, a professor of microbiology and microbial infection and immunity at Ohio State University, who did not participate in the work. “The concept of exploiting or rewiring a pathway in a bacteria, which is normally meant for normal homeostasis [and] normal cellular biology . . . is a new therapeutic twist,” he added.

“The beauty of this system is it seems to have a mechanism for going directly after the persister population—they basically chew themselves up from within,” explained microbiologist Lynn Hancock, an associate professor of molecular biosciences at Kansas State University, who was not involved in the work. Both hyperactivating a housekeeping gene and using ADEP4 in combination with other antibiotics represents “a really novel way of thinking about treating infection,” he continued.

Work still remains before this treatment reaches the clinic. Lewis explained that ADEP4 seems to work well for gram-positive pathogens like S. aureus, but is too large to penetrate the outer membrane of gram-negative bacteria, like Pseudomonas aeruginosa, which is often responsible for persistent biofilm infections in the lungs of cystic fibrosis patients. Lewis’s group is currently collaborating with a team of chemists to develop and identify other small molecules that could activate proteases in different bacteria and to produce ADEP4 variants with higher solubility and better activity. “There’s room to produce better analogs,” he said.

“An even harder test” of the treatment, and one that Ehrlich would really like to see, “would be to use an animal model [with] an implantable device and see if their therapy can eradicate a biofilm” on an implant, like a screw or an artificial joint, he said. “If they can eradicate that, that’s the holy grail.”

Wozniak pointed out that looking at other antibiotics besides rifampicin in combination with ADEP4 in vivo would be helpful for translating the findings. “In reality, clinicians have few choices to treat tolerant Staph aureus infections,” he said, “so it’d be nice to know how broadly applicable this will be.” He also would like to know how effective ADEP4 is for treating polymicrobial infections.

Despite the remaining challenges, experts believe the team’s findings will still have an impact. Gram-positive pathogens “are a worthy target to go after because those organisms are the leading cause of hospital-associated infection, and they’re often tolerant and resistant to a variety of antibiotics,” Hancock said. “Coming up with new ways and strategies to treat them is . . . a cool thing.”

“Over the past 15 years or so, we’ve established that most of these chronic infections are biofilms,” said Ehrlich. “For the first time, with this paper, we’re getting close to developing treatments. It certainly looks hopeful.”

B.P. Conlon et al., “Activated ClpP kills persisters and eradicates a chronic biofilm infection,” Nature, doi:10.1038/nature12790, 2013.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
Bacterial antibiotic resistance is widespread and presents ongoing challenges in treating infections. A less widely known—but equally challenging—problem is antibiotic tolerance, where bacteria called persisters are not sensitive to antibiotics because the drugs’ targets are inactive in these dormant cells. Kim Lewis’s group at Northeastern University in Boston, Massachusetts, had previously shown that persisters give biofilms their drug-tolerant properties. Now, Lewis and his colleagues have eradicated a biofilm infection with a derivative of the drug acyldepsipeptide called ADEP4, and showed that it activates a protease in persister cells, causing them to self-digest. Their work was published in Nature today (November 13).“From a treatment perspective or a translational research perspective, [this study is] probably one of the most profoundly important advances that I’ve seen in the field for more than a decade,” said Garth Ehrlich, who is a professor of microbiology and immunology at the Drexel University College of Medicine in Pennsylvania, and was not involved in the work. “This is really transformative,” he continued. “The fact that they were actually able to eradicate a biofilm infection in deep tissue is essentially unheard of.”Based on previous work in actively dividing cells, Lewis’s team predicted that ADEP4 would activate ClpP—a protease that typically identifies and degrades misfolded proteins—in dormant persisters, too. The researchers showed that in a stationary population of methicillin-resistant Staphylococcus aureus (MRSA), treatment with ADEP4 caused widespread, non-specific degradation of proteins, suggesting that activation of ClpP led to the cells’ self-digestion. ADEP4 alone did not kill all bacterial cells, which the authors suggested is likely due to mutations in ClpP that render those cells resistant to the compound. But ClpP mutants were susceptible to other antibiotics, so combinations of ciprofloxacin or rifampicin with ADEP4 led to a decrease in S. aureus to below the level of detection in vitro, in both biofilm and stationary populations.The ultimate test of ADEP4’s efficacy came when the scientists moved into a mouse model of chronic S. aureus biofilm infection. They showed that ADEP4 and rifampicin together eliminated the biofilm from muscle tissue of the mice to the limit of detection. “It’s a terrific weapon to kill cells,” said Lewis, and “it does an especially good job killing those that conventional antibiotics do not.”The paper is an “important advance in therapeutics against persistent infections,” said Daniel Wozniak, a professor of microbiology and microbial infection and immunity at Ohio State University, who did not participate in the work. “The concept of exploiting or rewiring a pathway in a bacteria, which is normally meant for normal homeostasis [and] normal cellular biology . . . is a new therapeutic twist,” he added.“The beauty of this system is it seems to have a mechanism for going directly after the persister population—they basically chew themselves up from within,” explained microbiologist Lynn Hancock, an associate professor of molecular biosciences at Kansas State University, who was not involved in the work. Both hyperactivating a housekeeping gene and using ADEP4 in combination with other antibiotics represents “a really novel way of thinking about treating infection,” he continued.Work still remains before this treatment reaches the clinic. Lewis explained that ADEP4 seems to work well for gram-positive pathogens like S. aureus, but is too large to penetrate the outer membrane of gram-negative bacteria, like Pseudomonas aeruginosa, which is often responsible for persistent biofilm infections in the lungs of cystic fibrosis patients. Lewis’s group is currently collaborating with a team of chemists to develop and identify other small molecules that could activate proteases in different bacteria and to produce ADEP4 variants with higher solubility and better activity. “There’s room to produce better analogs,” he said.“An even harder test” of the treatment, and one that Ehrlich would really like to see, “would be to use an animal model [with] an implantable device and see if their therapy can eradicate a biofilm” on an implant, like a screw or an artificial joint, he said. “If they can eradicate that, that’s the holy grail.”Wozniak pointed out that looking at other antibiotics besides rifampicin in combination with ADEP4 in vivo would be helpful for translating the findings. “In reality, clinicians have few choices to treat tolerant Staph aureus infections,” he said, “so it’d be nice to know how broadly applicable this will be.” He also would like to know how effective ADEP4 is for treating polymicrobial infections.Despite the remaining challenges, experts believe the team’s findings will still have an impact. Gram-positive pathogens “are a worthy target to go after because those organisms are the leading cause of hospital-associated infection, and they’re often tolerant and resistant to a variety of antibiotics,” Hancock said. “Coming up with new ways and strategies to treat them is . . . a cool thing.”“Over the past 15 years or so, we’ve established that most of these chronic infections are biofilms,” said Ehrlich. “For the first time, with this paper, we’re getting close to developing treatments. It certainly looks hopeful.”B.P. Conlon et al., “Activated ClpP kills persisters and eradicates a chronic biofilm infection,” Nature, doi:10.1038/nature12790, 2013.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
แบคทีเรียต้านทานยาปฏิชีวนะเป็นอย่างกว้างขวางและแสดงความท้าทายอย่างต่อเนื่องในการรักษาเชื้อ น้อยกว่าที่รู้จักอย่างกว้างขวาง แต่ในทางกลับกันปัญหาที่ท้าทายความอดทนยาปฏิชีวนะที่แบคทีเรียที่เรียกว่า persisters ไม่ไวต่อยาปฏิชีวนะเพราะยาเสพติดเป้าหมายจะถูกใช้งานในเซลล์เคลื่อนเหล่านี้ คิม ลูอิส กลุ่มภาคตะวันออกเฉียงเหนือ มหาวิทยาลัยในบอสตัน , แมสซาชูเซตก่อนหน้านี้ได้แสดงให้เห็นว่า persisters ให้ biofilms ยาใจกว้างคุณสมบัติของพวกเขา ตอนนี้ ลูอิสและเพื่อนร่วมงานของเขาได้เป็นฟิล์มกำจัดการติดเชื้อกับอนุพันธ์ของยา acyldepsipeptide เรียกว่า adep4 และพบว่ามันกระตุ้นโปรตีนในเซลล์ persister , ก่อให้เกิดพวกเขาจะย่อยตัวเอง งานของพวกเขาถูกตีพิมพ์ในธรรมชาติ วันนี้ ( 13 พ.ย. ) .

" จากการรักษามุมมองหรือมุมมองแปลงานวิจัย , [ การศึกษา ] อาจเป็นหนึ่งในความก้าวหน้าที่สำคัญที่สุดซึ้ง ที่ผมเคยเห็นในสนามมากกว่าทศวรรษที่ผ่านมากล่าวว่า " Garth ที่สุด ซึ่งเป็นศาสตราจารย์ด้านจุลชีววิทยาและวิทยาภูมิคุ้มกันที่วิทยาลัยแพทยศาสตร์มหาวิทยาลัย Drexel ใน Pennsylvania , และไม่ได้เกี่ยวข้อง ในการทํางาน " นี่คือการเปลี่ยนแปลงจริงๆ" เขาอย่างต่อเนื่อง " ความจริงที่ว่าพวกเขาเป็นจริงสามารถที่จะทำลายไบโอฟิล์มการติดเชื้อในเนื้อเยื่อลึกถึงแก่น unheard ของ "

ตามผลงานที่ผ่านมาในงานแบ่งเซลล์ ทีมของ ลิวอิส คาดการณ์ว่า adep4 จะเปิดใช้งาน clpp-a ติที่มักจะระบุและบั่นทอน misfolded โปรตีนในการเจริญเติบโต persisters เหมือนกันนักวิจัยพบว่า ในประชากรคงที่ของ methicillin-resistant Staphylococcus aureus ( MRSA ) , การรักษาด้วย adep4 ทำให้แพร่หลาย , การย่อยสลายเฉพาะของวิลเลียม แนะนำว่า การ clpp ไปสู่เซลล์ตนเองของการย่อยอาหาร adep4 คนเดียวไม่ได้ฆ่าเซลล์แบคทีเรียทั้งหมดซึ่งผู้เขียนเสนอมาก็น่าจะเกิดจากการกลายพันธุ์ใน clpp ที่ทำให้เซลล์เหล่านั้น ทนทานต่อสาร แต่ clpp กลายพันธุ์มีความไวต่อยาปฏิชีวนะอื่น ๆ ดังนั้นการรวมกันของซิโปรฟลอกซาซิน หรือ ไรแฟมปิซินกับ adep4 นำไปสู่การลดลงใน S . aureus ที่ต่ำกว่าระดับของการตรวจสอบในหลอดทดลอง ในประชากรทั้งฟิล์ม

และเครื่องเขียนการทดสอบที่ดีที่สุดของความสามารถของ adep4 มาเมื่อนักวิทยาศาสตร์ได้ย้ายเข้ามาเมาส์รูปแบบเรื้อรังของ S . aureus ฟิล์มติด พวกเขาพบว่า adep4 rifampicin ด้วยกันและกำจัดไบโอฟิล์มจากเนื้อเยื่อของกล้ามเนื้อของหนูเพื่อขีด จำกัด ของการตรวจสอบ " มันเป็นอาวุธที่ยอดเยี่ยมเพื่อฆ่าเซลล์ " ลูอิส" มันเป็นสิ่งที่ดีโดยเฉพาะอย่างยิ่งงานฆ่าผู้ที่ยาปฏิชีวนะทั่วไปไม่ได้ "

กระดาษเป็น " ล่วงหน้าที่สำคัญในการรักษาต่อต้านเชื้อถาวร กล่าวว่า แดเนียล วอซเนียก ศาสตราจารย์ด้านจุลชีววิทยาและการติดเชื้อจุลินทรีย์และภูมิคุ้มกันที่มหาวิทยาลัยโอไฮโอสเตต ที่ไม่ได้เข้าร่วมงาน " แนวคิดของการใช้ประโยชน์จากหรือ rewiring ทางเดินในแบคทีเรียซึ่งโดยปกติหมายถึง [ และ ] ชีววิทยา homeostasis ปกติของเซลล์ปกติ . . . . . . . คือบิดยา , " เขาเพิ่ม

" ความงามของระบบนี้คือมันมีกลไกไปตรงหลัง persister ประชากรโดยทั่วไปเคี้ยวเองขึ้นจากภายใน " อธิบายนักจุลชีววิทยา ลินน์ แฮนค็อก ศาสตราจารย์ชีววิทยาศาสตร์โมเลกุลที่มหาวิทยาลัยรัฐแคนซัสที่เกี่ยวข้องในงาน ทั้ง hyperactivating เป็นแม่บ้านของยีน และใช้ adep4 ร่วมกับยาปฏิชีวนะอื่น ๆแสดงถึง " วิธีใหม่ของการคิดเกี่ยวกับการรักษาติดเชื้อจริงๆ " เขาอย่างต่อเนื่อง

งานนี้ยังคงรักษาก่อนที่จะถึงคลีนิค ลูอิสอธิบายว่า adep4 ดูเหมือนว่าจะทำงานได้ดีสำหรับเชื้อโรคแบคทีเรียแกรมบวกเช่น S . aureus ,แต่มีขนาดใหญ่เกินไปที่จะเจาะเยื่อหุ้มชั้นนอกของแบคทีเรียแกรมลบ เช่น Pseudomonas aeruginosa ซึ่งมักจะรับผิดชอบถาวรกล่าวคือเชื้อในปอดของผู้ป่วย cystic fibrosis .ลูอิสกลุ่มกำลังร่วมมือกับทีมงานของนักเคมีพัฒนาโมเลกุลขนาดเล็กอื่นๆ ที่สามารถเปิดใช้งานในทางที่แตกต่างกันและเพื่อผลิต adep4 แบคทีเรียสายพันธุ์การละลายสูงขึ้น และกิจกรรมที่ดี " มีห้องผลิตสารที่ดี " เขากล่าว .

" แม้ยากทดสอบ " ของการรักษา และที่แน่นอนจะชอบที่จะเห็น" จะใช้รูปแบบสัตว์ [ กับ ] อุปกรณ์ implantable และดูว่า การรักษาของพวกเขาสามารถทำลายฟิล์ม " บนรากฟันเทียม เช่น สกรู หรือข้อเทียม เขากล่าวว่า " ถ้าพวกเขาสามารถกำจัดนั้นจอกศักดิ์สิทธิ์ "

Wozniak ชี้ให้เห็นว่ามองอื่น ๆนอกเหนือจาก rifampicin ยาปฏิชีวนะร่วมกับ adep4 โดยจะเป็นประโยชน์สำหรับการแปลผล" ในความเป็นจริงแล้ว แพทย์มีตัวเลือกน้อยถือว่าใจกว้าง Staph aureus เชื้อ , " เขากล่าวว่า " ดังนั้น มันก็คงจะดีที่จะรู้ว่าใช้ได้กว้างนี้จะ . " นอกจากนี้เขายังต้องการที่จะรู้ว่า adep4 มีประสิทธิภาพสำหรับการรักษาเชื้อ polymicrobial

แม้จะมีความท้าทายที่เหลือ ผู้เชี่ยวชาญเชื่อว่า ผลการวิจัยของทีมจะ ก็จะมีผลกระทบต่อเชื้อโรค " แกรมบวก เป็นเป้าหมายที่คุ้มค่าที่จะตามไป เพราะสิ่งมีชีวิตที่เป็นสาเหตุของการติดเชื้อที่เกี่ยวข้องในโรงพยาบาล และพวกเขามักจะใจกว้างและป้องกันความหลากหลายของยาปฏิชีวนะ , " แฮนค็อกกล่าว " มากับวิธีการใหม่และกลยุทธ์ในการรักษาพวกเขาเป็น . . . . . . . สิ่งที่เย็น . "

" ที่ผ่านมา 15 ปีหรือดังนั้นเราได้ก่อตั้งขึ้นที่ส่วนใหญ่ของการติดเชื้อเรื้อรังเหล่านี้ไบโอฟิล์มกล่าวว่า " แน่นอน . " ครั้งแรกกับกระดาษนี้ , พวกเราใกล้จะถึงการพัฒนาการรักษา มันดูเหมือนมีความหวัง "

ความดันเลือด คอลลอน et al . , " เปิดใช้งาน clpp ฆ่า persisters eradicates เรื้อรังและการติดเชื้อฟิล์ม " ธรรมชาติ ดอย : 10.1038/nature12790 2013
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: