The presentation of these proven plans for LED array construction allows the teacher, researcher or electronics aficionado a means to inexpensively build efficient, adjustable lighting modules for plant research. These simple and effective designs permit the construction of useful tools by programs short on electronics expertise. These arrays represent a means to modulate precise quality and quantity in experimental settings to test the effect of specific light combinations in regulating plant growth, development and plant-product yield.
Results and discussion
The advent of new semiconductor technologies has inspired a marked decrease in the price of LED-based devices. An increased number of consumer-grade products have become available to the researcher, and now these new tools may be integrated into various light-research applications. The goal of this work is to provide an interface between research needs and new technology. With this, the best-available research tools may be implemented by researchers without a significant investment in development. The plans presented herein offer two options for LED light source construction, based on the need of an experimental illumination tool or requirement for large-area irradiation.
LED-based lighting regimes are being adopted by municipalities and medical facilities for their consistent, low-power, low-maintenance output. However, one of the most important practical applications of this technology is in the design for lighting regimes to support plant growth. It is of great interest to not only to foster plant growth, but to control plant growth. Basic plant research has demonstrated that specific light wavebands may affect discrete aspects of plant physiology, such as germination [19], stem growth [20], biomass [15,21,22] and the transition to flowering [23]. The supplementation of specific wavebands or skewing of overall spectrum may help modulate the progression of these developmental events. The possibility that combinatorial light regimes may help to optimize growth and control developmental transitions makes the implementation of LED technology particularly attractive to the design of controlled environments targeted to plant production for aesthetic applications, or applications relevant to human nutrition. If spectral quality alone can delay or hasten the floral transition it may have profound effects on modulating the delivery of nursery goods or perhaps affect the availability of consumable produce in a finite, controlled environment. This attribute alone makes LED lighting a compelling platform for specific plant growth routines, such as those proposed for long-term inhabitation of space. Since humans rely specifically on vegetative parts (like stems, leaves and tubers) or reproductive parts (berries and seeds) of plants for nutrition, it is critical to develop systems which impart control of the progression of plant development to affect plant output toward the particular needs of humans.
The implementation of narrow-wavelength LED technology may benefit plant growth schema through supplementation or complete retrofitting of existing chambers. Its compact design may replace existing infrastructure with long-life and consistent output. Here, antiquated lamp systems, replete with toxic, inefficient fluors, may be refitted with efficient light sources that require little to no maintenance with comparable light output. Although previously unattainable without substantial engineering, the geometry of the systems provided in this report brings LED technology to the average plant biology laboratory.
Despite their vast advantages over conventional lighting systems, the LED arrays described in this report offer opportunities for improvement and expansion. Larger installations (e.g. 100 HEX arrays) require close attention to array density, as the fluence rate of RGB HEX LED lights decays significantly toward the edges of the irradiation area. Careful arrangement modified to the application lessens the frequency of "hotspots" or other gradients of light intensities under the light fixture. It is impossible to eliminate all variability under the arrays under all fluence rates and light combinations. The spacing of HEX units in individual systems needs to be carefully tailored for the specific application.
งานนำเสนอเหล่านี้พิสูจน์แผนก่อสร้างอาร์เรย์ของ LED ได้อาจารย์ นักวิจัย หรือ aficionado อิเล็กทรอนิกส์วิธีสร้างโมดูลมีประสิทธิภาพ ปรับแสงพืชวิจัยราคาไม่แพง ออกแบบง่าย และมีประสิทธิภาพเหล่านี้อนุญาตให้ก่อสร้างเครื่องมือที่มีประโยชน์ โดยโปรแกรมสั้น ๆ ในความเชี่ยวชาญอุปกรณ์อิเล็กทรอนิกส์ อาร์เรย์นี้แสดงวิธี modulate แม่นยำคุณภาพและปริมาณในการตั้งค่าการทดลองเพื่อทดสอบผลของชุดไฟเฉพาะในการควบคุมการเจริญเติบโตของพืช การพัฒนา และผลผลิตพืชผลิตภัณฑ์ผลและการสนทนาการมาถึงของเทคโนโลยีสารกึ่งตัวนำมีแรงบันดาลใจลดลงราคาของ LED อุปกรณ์เครื่อง หมายเลขที่เพิ่มขึ้นของผลิตภัณฑ์ผู้บริโภคระดับกลายเป็นพร้อมใช้งานสำหรับนักวิจัย และตอนนี้ เครื่องมือใหม่อาจจะรวมอยู่ในโปรแกรมประยุกต์วิจัยแสงต่าง ๆ เป้าหมายของงานนี้คือการ ให้อินเทอร์เฟซระหว่างการวิจัยความต้องการและเทคโนโลยีใหม่ นี้อาจนำเครื่องมือวิจัยมีส่วน โดยนักวิจัยโดยไม่ต้องลงทุนอย่างมีนัยสำคัญในการพัฒนา แผนที่นำเสนอนี้มีสองตัวเลือกสำหรับการก่อสร้างแหล่งกำเนิดแสง LED ตามจำเป็นต้องเป็นเครื่องมือทดลองการใช้แสงสว่างหรือความต้องการพื้นที่ขนาดใหญ่วิธีการฉายรังสีLED-based lighting regimes are being adopted by municipalities and medical facilities for their consistent, low-power, low-maintenance output. However, one of the most important practical applications of this technology is in the design for lighting regimes to support plant growth. It is of great interest to not only to foster plant growth, but to control plant growth. Basic plant research has demonstrated that specific light wavebands may affect discrete aspects of plant physiology, such as germination [19], stem growth [20], biomass [15,21,22] and the transition to flowering [23]. The supplementation of specific wavebands or skewing of overall spectrum may help modulate the progression of these developmental events. The possibility that combinatorial light regimes may help to optimize growth and control developmental transitions makes the implementation of LED technology particularly attractive to the design of controlled environments targeted to plant production for aesthetic applications, or applications relevant to human nutrition. If spectral quality alone can delay or hasten the floral transition it may have profound effects on modulating the delivery of nursery goods or perhaps affect the availability of consumable produce in a finite, controlled environment. This attribute alone makes LED lighting a compelling platform for specific plant growth routines, such as those proposed for long-term inhabitation of space. Since humans rely specifically on vegetative parts (like stems, leaves and tubers) or reproductive parts (berries and seeds) of plants for nutrition, it is critical to develop systems which impart control of the progression of plant development to affect plant output toward the particular needs of humans.The implementation of narrow-wavelength LED technology may benefit plant growth schema through supplementation or complete retrofitting of existing chambers. Its compact design may replace existing infrastructure with long-life and consistent output. Here, antiquated lamp systems, replete with toxic, inefficient fluors, may be refitted with efficient light sources that require little to no maintenance with comparable light output. Although previously unattainable without substantial engineering, the geometry of the systems provided in this report brings LED technology to the average plant biology laboratory.Despite their vast advantages over conventional lighting systems, the LED arrays described in this report offer opportunities for improvement and expansion. Larger installations (e.g. 100 HEX arrays) require close attention to array density, as the fluence rate of RGB HEX LED lights decays significantly toward the edges of the irradiation area. Careful arrangement modified to the application lessens the frequency of "hotspots" or other gradients of light intensities under the light fixture. It is impossible to eliminate all variability under the arrays under all fluence rates and light combinations. The spacing of HEX units in individual systems needs to be carefully tailored for the specific application.
การแปล กรุณารอสักครู่..
