RESEARCH AND ANALYSISIntroductionCorn-ethanol biofuel production in th การแปล - RESEARCH AND ANALYSISIntroductionCorn-ethanol biofuel production in th ไทย วิธีการพูด

RESEARCH AND ANALYSISIntroductionCo

RESEARCH AND ANALYSIS
Introduction
Corn-ethanol biofuel production in the United States is expanding rapidly in response to a sudden rise in petroleum prices and support- ive federal subsidies. From a base of 12.9 billion liters (3.4 billion gallons [bg]) from 81 facilities in 2004, annual production capacity increased to 29.9 billion liters (7.9 bg) from 139 biorefineries in January 2008 (RFA 2008). With an additional 20.8 billion liters (5.5 bg) of capacity from 61 fa- cilities currently under construction, total annual production potential will likely reach 50.7 billion liters (13.4 bg) within 1–2 years, with facilities built since 2004 representing 75% of production capacity. This level of production is ahead of the mandated grain-based ethanol production sched- ule in the Energy Independence and Security Act (EISA) of 2007, which peaks at 57 billion liters (15 bg) in 2015 (U.S. Congress 2007). At this level of production, corn-ethanol will replace about 10% of total U.S. gasoline use on a volu- metric basis and nearly 17% of gasoline derived from imported oil.
Biofuels have been justified and supported by federal subsidies largely on the basis of two as- sumptions about the public goods that result from their use, namely, (1) that they reduce depen- dence on imported oil, and (2) that they re- duce greenhouse gas (GHG) emissions (carbon dioxide [CO2], methane [CH4], and nitrous ox- ide [N2O]) when they replace petroleum-derived gasoline or diesel transportation fuels.1 In the case of corn-ethanol, however, several recent re- ports estimate a relatively small net energy ra- tio (NER) and GHG emissions reduction com- pared to gasoline (Farrell et al. 2006; Wang et al.
2007) or a net increase in GHG emissions when both direct and indirect emissions are considered (Searchinger et al. 2008). These studies rely on estimates of energy efficiencies in older ethanol plants that were built before the recent invest- ment boom in new ethanol biorefineries that ini- tiated production on or after January 2005. These recently built facilities now represent about 60% of total ethanol production and will account for 75% by the end of 2009.
These newer biorefineries have increased en- ergy efficiency and reduced GHG emissions through the use of improved technologies, such as
2 Journal of Industrial Ecology
thermocompressors for condensing steam and in- creasing heat reuse; thermal oxidizers for combus- tion of volatile organic compounds (VOCs) and waste heat recovery; and raw-starch hydrolysis, which reduces heat requirements during fermen- tation. Likewise, a large number of new biore- fineries are located in close proximity to cattle feeding or dairy operations, because the high- est value use of coproduct distillers grains is for cattle feed, compared to their value in poul- try or swine rations (Klopfenstein et al. 2008). Close proximity to livestock feeding operations means that biorefineries do not need to dry dis- tillers grains to facilitate long-distance transport to livestock feeding sites, which saves energy and reduces GHG emissions. Corn yields also have been increasing steadily at 114 kg ha−1 (1.8 bu ac−1) due to improvements in both crop genetics and agronomic management prac- tices (Duvick and Cassman 1999; Cassman and Liska 2007). For example, nitrogen fertilizer ef- ficiency, estimated as the increase in grain yield due to applied nitrogen, has increased by 36% since 1980 (Cassman et al. 2002), and nitro- gen fertilizer accounts for a large portion of en- ergy inputs and GHG emissions in corn pro- duction (Adviento-Borbe et al. 2007). Similarly, the proportion of farmers adopting conservation tillage practices that reduce diesel fuel use has risen from 26% in 1990 to 41% in 2004 (CTIC
2004).
The degree to which recent technological im- provements in crop production, ethanol biore- fining, and coproduct utilization affect life cycle GHG emissions and net energy yield (NEY) of corn-ethanol systems has not been thoroughly evaluated. Widespread concerns about the im- pact of corn-ethanol on GHG emissions and its potential to replace petroleum-based transporta- tion fuels require such updates. For example, the 2007 EISA mandates that life cycle GHG emis- sions of corn-ethanol, cellulosic ethanol, and ad- vanced biofuels achieve 20%, 60%, and 50% GHG emissions reductions relative to gasoline, respectively (US Congress 2007). California is currently in the process of developing regula- tions to implement a low-carbon fuel standard (LCFS), with the goal of reducing GHG emis- sions from motor fuels by 10% by 2020 com- paredtopresent levels (Arons et al. 2007). Global
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
RESEARCH AND ANALYSISIntroductionCorn-ethanol biofuel production in the United States is expanding rapidly in response to a sudden rise in petroleum prices and support- ive federal subsidies. From a base of 12.9 billion liters (3.4 billion gallons [bg]) from 81 facilities in 2004, annual production capacity increased to 29.9 billion liters (7.9 bg) from 139 biorefineries in January 2008 (RFA 2008). With an additional 20.8 billion liters (5.5 bg) of capacity from 61 fa- cilities currently under construction, total annual production potential will likely reach 50.7 billion liters (13.4 bg) within 1–2 years, with facilities built since 2004 representing 75% of production capacity. This level of production is ahead of the mandated grain-based ethanol production sched- ule in the Energy Independence and Security Act (EISA) of 2007, which peaks at 57 billion liters (15 bg) in 2015 (U.S. Congress 2007). At this level of production, corn-ethanol will replace about 10% of total U.S. gasoline use on a volu- metric basis and nearly 17% of gasoline derived from imported oil.Biofuels have been justified and supported by federal subsidies largely on the basis of two as- sumptions about the public goods that result from their use, namely, (1) that they reduce depen- dence on imported oil, and (2) that they re- duce greenhouse gas (GHG) emissions (carbon dioxide [CO2], methane [CH4], and nitrous ox- ide [N2O]) when they replace petroleum-derived gasoline or diesel transportation fuels.1 In the case of corn-ethanol, however, several recent re- ports estimate a relatively small net energy ra- tio (NER) and GHG emissions reduction com- pared to gasoline (Farrell et al. 2006; Wang et al.2007) or a net increase in GHG emissions when both direct and indirect emissions are considered (Searchinger et al. 2008). These studies rely on estimates of energy efficiencies in older ethanol plants that were built before the recent invest- ment boom in new ethanol biorefineries that ini- tiated production on or after January 2005. These recently built facilities now represent about 60% of total ethanol production and will account for 75% by the end of 2009.These newer biorefineries have increased en- ergy efficiency and reduced GHG emissions through the use of improved technologies, such as2 Journal of Industrial Ecologythermocompressors for condensing steam and in- creasing heat reuse; thermal oxidizers for combus- tion of volatile organic compounds (VOCs) and waste heat recovery; and raw-starch hydrolysis, which reduces heat requirements during fermen- tation. Likewise, a large number of new biore- fineries are located in close proximity to cattle feeding or dairy operations, because the high- est value use of coproduct distillers grains is for cattle feed, compared to their value in poul- try or swine rations (Klopfenstein et al. 2008). Close proximity to livestock feeding operations means that biorefineries do not need to dry dis- tillers grains to facilitate long-distance transport to livestock feeding sites, which saves energy and reduces GHG emissions. Corn yields also have been increasing steadily at 114 kg ha−1 (1.8 bu ac−1) due to improvements in both crop genetics and agronomic management prac- tices (Duvick and Cassman 1999; Cassman and Liska 2007). For example, nitrogen fertilizer ef- ficiency, estimated as the increase in grain yield due to applied nitrogen, has increased by 36% since 1980 (Cassman et al. 2002), and nitro- gen fertilizer accounts for a large portion of en- ergy inputs and GHG emissions in corn pro- duction (Adviento-Borbe et al. 2007). Similarly, the proportion of farmers adopting conservation tillage practices that reduce diesel fuel use has risen from 26% in 1990 to 41% in 2004 (CTIC2004).The degree to which recent technological im- provements in crop production, ethanol biore- fining, and coproduct utilization affect life cycle GHG emissions and net energy yield (NEY) of corn-ethanol systems has not been thoroughly evaluated. Widespread concerns about the im- pact of corn-ethanol on GHG emissions and its potential to replace petroleum-based transporta- tion fuels require such updates. For example, the 2007 EISA mandates that life cycle GHG emis- sions of corn-ethanol, cellulosic ethanol, and ad- vanced biofuels achieve 20%, 60%, and 50% GHG emissions reductions relative to gasoline, respectively (US Congress 2007). California is currently in the process of developing regula- tions to implement a low-carbon fuel standard (LCFS), with the goal of reducing GHG emis- sions from motor fuels by 10% by 2020 com- paredtopresent levels (Arons et al. 2007). Global
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
RESEARCH AND ANALYSIS
Introduction
Corn-ethanol biofuel production in the United States is expanding rapidly in response to a sudden rise in petroleum prices and support- ive federal subsidies. From a base of 12.9 billion liters (3.4 billion gallons [bg]) from 81 facilities in 2004, annual production capacity increased to 29.9 billion liters (7.9 bg) from 139 biorefineries in January 2008 (RFA 2008). With an additional 20.8 billion liters (5.5 bg) of capacity from 61 fa- cilities currently under construction, total annual production potential will likely reach 50.7 billion liters (13.4 bg) within 1–2 years, with facilities built since 2004 representing 75% of production capacity. This level of production is ahead of the mandated grain-based ethanol production sched- ule in the Energy Independence and Security Act (EISA) of 2007, which peaks at 57 billion liters (15 bg) in 2015 (U.S. Congress 2007). At this level of production, corn-ethanol will replace about 10% of total U.S. gasoline use on a volu- metric basis and nearly 17% of gasoline derived from imported oil.
Biofuels have been justified and supported by federal subsidies largely on the basis of two as- sumptions about the public goods that result from their use, namely, (1) that they reduce depen- dence on imported oil, and (2) that they re- duce greenhouse gas (GHG) emissions (carbon dioxide [CO2], methane [CH4], and nitrous ox- ide [N2O]) when they replace petroleum-derived gasoline or diesel transportation fuels.1 In the case of corn-ethanol, however, several recent re- ports estimate a relatively small net energy ra- tio (NER) and GHG emissions reduction com- pared to gasoline (Farrell et al. 2006; Wang et al.
2007) or a net increase in GHG emissions when both direct and indirect emissions are considered (Searchinger et al. 2008). These studies rely on estimates of energy efficiencies in older ethanol plants that were built before the recent invest- ment boom in new ethanol biorefineries that ini- tiated production on or after January 2005. These recently built facilities now represent about 60% of total ethanol production and will account for 75% by the end of 2009.
These newer biorefineries have increased en- ergy efficiency and reduced GHG emissions through the use of improved technologies, such as
2 Journal of Industrial Ecology
thermocompressors for condensing steam and in- creasing heat reuse; thermal oxidizers for combus- tion of volatile organic compounds (VOCs) and waste heat recovery; and raw-starch hydrolysis, which reduces heat requirements during fermen- tation. Likewise, a large number of new biore- fineries are located in close proximity to cattle feeding or dairy operations, because the high- est value use of coproduct distillers grains is for cattle feed, compared to their value in poul- try or swine rations (Klopfenstein et al. 2008). Close proximity to livestock feeding operations means that biorefineries do not need to dry dis- tillers grains to facilitate long-distance transport to livestock feeding sites, which saves energy and reduces GHG emissions. Corn yields also have been increasing steadily at 114 kg ha−1 (1.8 bu ac−1) due to improvements in both crop genetics and agronomic management prac- tices (Duvick and Cassman 1999; Cassman and Liska 2007). For example, nitrogen fertilizer ef- ficiency, estimated as the increase in grain yield due to applied nitrogen, has increased by 36% since 1980 (Cassman et al. 2002), and nitro- gen fertilizer accounts for a large portion of en- ergy inputs and GHG emissions in corn pro- duction (Adviento-Borbe et al. 2007). Similarly, the proportion of farmers adopting conservation tillage practices that reduce diesel fuel use has risen from 26% in 1990 to 41% in 2004 (CTIC
2004).
The degree to which recent technological im- provements in crop production, ethanol biore- fining, and coproduct utilization affect life cycle GHG emissions and net energy yield (NEY) of corn-ethanol systems has not been thoroughly evaluated. Widespread concerns about the im- pact of corn-ethanol on GHG emissions and its potential to replace petroleum-based transporta- tion fuels require such updates. For example, the 2007 EISA mandates that life cycle GHG emis- sions of corn-ethanol, cellulosic ethanol, and ad- vanced biofuels achieve 20%, 60%, and 50% GHG emissions reductions relative to gasoline, respectively (US Congress 2007). California is currently in the process of developing regula- tions to implement a low-carbon fuel standard (LCFS), with the goal of reducing GHG emis- sions from motor fuels by 10% by 2020 com- paredtopresent levels (Arons et al. 2007). Global
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
การวิจัยและการวิเคราะห์เบื้องต้น

เอทานอลเชื้อเพลิงชีวภาพการผลิตข้าวโพดในสหรัฐอเมริกาขยายอย่างรวดเร็วในการตอบสนองต่อการเพิ่มขึ้นอย่างฉับพลันในราคาปิโตรเลียมและสนับสนุนเงินอุดหนุนของรัฐบาลกลาง Ive . จากฐานของ 12.9 พันล้านลิตร ( 3.4 พันล้านแกลลอน [ BG ] ) จาก 81 เครื่องในปี 2004 กําลังการผลิตเพิ่มขึ้น 29.9 พันล้านลิตร ( 79 BG ) จาก 139 บีโอเรจึง neries ในเดือนมกราคม 2008 ( RFA ) ) ด้วยการเพิ่มเติม 20.8 ล้านลิตร ( 5.5 BG ) ความจุจาก 61 ฟ้า - cilities ในปัจจุบันภายใต้การก่อสร้าง , ศักยภาพการผลิตปีรวมอาจจะถึง 50.7 พันล้านลิตร ( 13.4 BG ) ภายใน 1 – 2 ปี กับเครื่องที่สร้างขึ้นตั้งแต่ปี 2004 หรือ 75% ของการผลิตระดับของการผลิตนี้ล่วงหน้าของเมล็ดในการผลิตเอทานอล sched จิ๋วในพลังงานอิสระและการรักษาความปลอดภัยตามพระราชบัญญัติ ( บัส ) ของปี 2550 ซึ่งยอดที่ 57 ล้านลิตร ( 15 BG ) ในปี 2015 ( รัฐสภาคองเกรสแห่งสหรัฐอเมริกา 2007 ) ระดับของการผลิตนี้จะแทนที่เอทานอลข้าวโพดประมาณ 10% ของทั้งหมดสหรัฐใช้เบนซินในโวลู - พื้นฐานเมตริกและเกือบ 17% ของน้ำมันเบนซินที่ได้จากการนำเข้าน้ำมัน .
ก็มีแค่ จึงเอ็ดและได้รับการสนับสนุนโดยรัฐบาลกลางอุดหนุนส่วนใหญ่บนพื้นฐานของทั้งสองเป็น - sumptions เกี่ยวกับสาธารณะสินค้าที่เกิดจากการใช้ ของพวกเขา คือ ( 1 ) ที่พวกเขาลด depen - dence ในการนำเข้าน้ำมัน และ ( 2 ) ที่พวกเขา re - duce ก๊าซเรือนกระจก ( GHG ) การปล่อยก๊าซคาร์บอนไดออกไซด์ [ ( ก๊าซ CO2 ] , [ ร่าง ]ไนตรัสอ๊อกและ N2O - IDE [ ] ) เมื่อพวกเขาแทนที่ปิโตรเลียมและเชื้อเพลิงเบนซินหรือดีเซลในการขนส่ง 1 ในกรณีของเอทานอลข้าวโพด , อย่างไรก็ตาม , หลายล่าสุด Re - พอร์ตประมาณการที่ค่อนข้างเล็กและพลังงานสุทธิรา - เนอร์ ) และการลดการปล่อยก๊าซเรือนกระจก com - pared น้ำมันเบนซิน ( ฟาร์เรล et al . 2006 ; Wang et al .
2007 ) หรือเพิ่มขึ้นสุทธิในการปล่อยก๊าซเรือนกระจก เมื่อทั้งทางตรงและทางอ้อม การถือว่า เซอร์ชิงเกอร์ ( et al . 2008 ) การศึกษานี้อาศัยการประเมินพลังงานจึง ciencies EF ในรุ่นเก่าโรงงานเอทานอลที่ถูกสร้างขึ้นก่อนการบูมในใหม่ล่าสุดลงทุนเอทานอลบีโอเรจึง neries ที่ใช้ - tiated ผลิตในหรือหลังมกราคม 2005เหล่านี้สร้างขึ้นเมื่อไม่นานมานี้ เครื่องแทน ประมาณ 60% ของการผลิตเอทานอลรวมและจะบัญชีสำหรับร้อยละ 75 โดยสิ้นปี 2009
รุ่นใหม่เหล่านี้จึงได้เพิ่ม EN - บิโอเร neries ไฟ EF ประสิทธิภาพและลดการปล่อยก๊าซเรือนกระจกจึงผ่านการใช้เทคโนโลยีที่ดีขึ้น เช่น วารสารนิเวศวิทยา

2 thermocompressors ควบแน่นไอน้ำและอุตสาหกรรมสำหรับ - เพิ่มขึ้น ใช้ความร้อนoxidizers ความร้อนสำหรับ combus - tion ของสารอินทรีย์ระเหยง่าย ( VOCs ) และการกู้คืนความร้อนทิ้ง และการย่อยแป้งดิบ ซึ่งลดความต้องการความร้อนใน fermen - tation . อนึ่ง ตัวเลขขนาดใหญ่ของบิโอเร - ใหม่จึง neries ตั้งอยู่ใกล้กับโคให้นมหรือปฏิบัติการนม เพราะค่าใช้สูง - EST coproduct การกลั่นธัญพืชสำหรับเลี้ยงปศุสัตว์
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: