Hyperthermia
Nanoparticle induced hyperthermia can be used to locally destroy tumor cells. Heat generation is usually achieved by two approaches, magnetic and photothermal hyperthermia. In magnetic hyperthermia, an extracorporeal coil creates an alternating magnetic field that heats magnetic nanoparticles inside a tumor. This increases the temperature in the tumor without affecting healthy tissue. A recent study assessed the effect of inhalable superparamagnetic iron oxide nanoparticles in a mouse model of NSCLC. Compared to the nontargeted nanoparticles, the epidermal growth factor receptor (EGFR) targeted nanoparticles showed significantly more effective tumor shrinkage after magnetic hyperthermia treatment [17]. The other approach, photothermal therapy uses laser adiation in the visible or near infrared spectrum and photosensitizing nanoparticles such as gold or graphene. A commercial product called auroshell is available for tumor therapy. Auroshell nanoparticles consist of a silica core surrounded by a thin layer of gold. The gold nanoshells are administered intravenously and accumulate in the tumor due to the EPR effect. Upon exposure of the tumor to a near infrared laser, the laser energy is efficiently converted to heat by the gold nanoshells [18].This therapy, which is called AuroLase, is currently undergoing clinical trial in patients with primary and/or metastatic lung tumors [19] (Fig. 4).
HyperthermiaNanoparticle induced hyperthermia can be used to locally destroy tumor cells. Heat generation is usually achieved by two approaches, magnetic and photothermal hyperthermia. In magnetic hyperthermia, an extracorporeal coil creates an alternating magnetic field that heats magnetic nanoparticles inside a tumor. This increases the temperature in the tumor without affecting healthy tissue. A recent study assessed the effect of inhalable superparamagnetic iron oxide nanoparticles in a mouse model of NSCLC. Compared to the nontargeted nanoparticles, the epidermal growth factor receptor (EGFR) targeted nanoparticles showed significantly more effective tumor shrinkage after magnetic hyperthermia treatment [17]. The other approach, photothermal therapy uses laser adiation in the visible or near infrared spectrum and photosensitizing nanoparticles such as gold or graphene. A commercial product called auroshell is available for tumor therapy. Auroshell nanoparticles consist of a silica core surrounded by a thin layer of gold. The gold nanoshells are administered intravenously and accumulate in the tumor due to the EPR effect. Upon exposure of the tumor to a near infrared laser, the laser energy is efficiently converted to heat by the gold nanoshells [18].This therapy, which is called AuroLase, is currently undergoing clinical trial in patients with primary and/or metastatic lung tumors [19] (Fig. 4).
การแปล กรุณารอสักครู่..