Dehydration of strawberries is an indication of the breakdown of the red receptacle tissue, which results in off-flavouring, microbial decay, loss of turgor and water evaporation. Figure 2b shows the time dependent weight loss (express as fraction of original weight) of strawberries as a function of dip coating steps and of silk fibroin beta sheets content. Two-way ANOVA test with Tukey mean analysis was used to evaluate the data. Silk fibroin beta-sheet content but not number of coating steps affected the dehydration of the strawberries considered. Uncoated controls lost circa 70 wt% of their original weight in the 14 days considered. Strawberries simply coated (i.e. no water-annealing post-process) silk fibroin (Dx23%) retained more water compared to controls at day 5 (p < 0.05). Strawberries coated with silk fibroin and further treated with water annealing process presented a decreased dehydration compared to strawberries non-treated with water-annealing (p < 0.05) and to uncoated controls (p < 0.05). However, water annealing time (i.e. silk fibroin beta-sheet content >36%) did not statistically significantly affect changes in the strawberries’ original weight (p > 0.05) for all the time considered. To investigate the phenomenon of fruit dehydration through thin silk fibroin coatings, the interplay between silk fibroin thin membranes and water have been investigated (Table 2 and Table S2). In particular, hydrodynamic permeability and water diffusivity phenomena were explored (Fig. 3a,b, respectively). Investigation of hydrodynamic permeability showed that silk fibroin beta-sheet content did not statistically significantly affect (p > 0.05) water permeation (as per one-way ANOVA test with Tukey mean analysis). The study of water diffusivity revealed that the beta-sheet content of silk fibroin membranes slightly affected mass transport