R1 and R4 are the only two routers in area 14 and each generates one Type 1 LSA. There is a single subnet (between R1 and R4) in area 14 that has a DR, so a single Type 2 LSA is generated by the DR, that is, R4 for that subnet. Finally, the router R1 being the ABR generates four Type 3 LSAs into area 14 to represent four subnets (prefixes) in areas 0 and 1 .
////////////
You can actually view the LSAs shown in the graphic above using the show ipv6 ospf database command:
/////////// 1111
OSPFv3 Metrics and Routes ////////
OSPFv3 is a dynamic routing protocol for IPv6 and all the end goal of OSPFv3 like any other routing protocol is to have viable routes that you can actually install in the routing table for actual forwarding of packets.///////
The SPF algorithm considers all the paths or routes available on the local router to reach each and every subnet. When there are more than one available routes on the local router to reach a remote subnet, the SPF algorithm must select the best route based on the lowest metric. The best route selected by OSPFv3 on the basis of lowest metric is then added to the IPv6 routing table.
/////////
When you display the IPv6 routing table, the metric for the route is second of the two numbers in square brackets for the route. The first number in brackets is the AD (administrative distance) that is 110 for OSPFv3 as well as OSPFv2. In fact, all IPv6 routing protocols use the same AD values as their IPv4 counterparts. You can view the IPv6 routing table using the show ipv6 route command://////////////2
The router R1 has two routes to the IPv6 subnet 2001:DB8:1:23::/64, as shown in the above output. One route goes through R2 off interface Serial0/0 while the other goes through R3 off interface Serial0/1. The default setting of maximum-paths 4 allows for up to four equal cost routes to be installed in the routing table. There is no surprise that two routes to the subnet can be seen in the IPv6 routing table of R1. You may have noticed that link-local addresses for the next hop are used in the routing table.
//////////////
Let’s focus on the router R2 now that has two possible paths to reach the subnet 2001:DB8:1:1::/64. The first path goes directly through R1 while the second path takes the longer route through R3 and R1 to reach the subnet.////////////////3
The OI code at the left of the subnet identifies the method used to learn the router. The O identifies the route as being learned by OSPFv3, and the I indicates the route as an inter-area route.