Initial understanding in biological systematics
Segregating understanding into three distinct classes when speaking of biological systematics provides a way to indicate the internested relations that exist in systematics research. In other words, there tends to be a three-tier system of inquiry:descriptive understanding, in the form of observation statements, is a consequence of our desire to attain understanding of sense data by way of the existence of objects with particular properties, and that level of understanding naturally leads to sets of questions answerable by proximate causes, given that we routinely observe individuals at different points in their life history, and with observations among groups of organisms there are additional questions to which a variety of ultimate causes can be applied.
Continued understanding in biological systematics
The relations between the classes of understanding presented above tend to be operationally internested from the perspective that our opportunities to test hypotheses that are (1) descriptive, (2) proximate, and (3) ultimate,respectively, tend to be increasingly more restricted and thus less frequent (Fitzhugh 2010a). Compare, for instance, the ability to (1′) test the descriptive hypothesis that I observe a lizard with three toes (I–III, as opposed to II–IV) in contrast to four toes (I–IV), to (2′) the proximate hypothesis explaining by way of ontogeny the presence of toes I–III in this adult, to (3′) an ultimate (phylogenetic) hypothesis explaining the presence of toes I–III in contrast to I–IV among individuals to which several different species hypotheses apply. Assessing the observation statement would minimally require (1″) bservations of the expected skeletal components that comprise I–III (as opposed to II–IV), while testing the ontogenetic hypothesis would require (2″) the commitment of time and resources to observe causal relations among limbs and toes within individuals over some period of time duringtheir life history. Testing the phylogenetic hypothesis would be the most challenging, as it would require (3″) access to test evidence not only regarding the specific causal events associated with origin and fixation of the threetoe condition in an ancestral population, but also evidence of the cause(s) that led to subsequent splitting(s) of the population(s), colloquially referred to as ‘speciation.’
Assessing our causal understanding in biological systematics, whether descriptive, proximate, or ultimate, is determined by the extent to which hypothesis testing, sensu [3], is accomplished. While the act of inferring an explanatory hypothesis provides initial understanding, in that the hypothesis serves as an answer to at least one specifiable question, it is a hallmark of the sciences that engaging in critically evaluating such hypotheses allows us to not only gauge the current status of understanding but to alter or revise that understanding over time. But as noted earlier, the ability to test biological systematics hypotheses becomes progressively more difficult as one proceeds from descriptive, to proximate, to ultimate explanations. A prominent limiting factor for the testing of higher-level ultimate hypotheses is the span of time between those effects that prompt inferences of hypotheses and the causal events themselves. The greater the span of time from a hypothesized cause(s) and observed effects the more likely will be the eradication of relevant evidence required to test those hypotheses (Cleland 2011a). The consequence of the inherent difficulty with testing ultimate explanations is that two of the most prominent classes of evolutionary hypotheses, specific and phylogenetic (cf. Fig. 1), are almost never legitimately tested, such that there is no actual enhancement of understanding via hypothesis revision or replacement on the basis of empirical assessments of causal relations. Rather, once ultimate hypotheses have been inferred, the tendency among systematists is to direct focus back to the inferences of additional or revised descriptive and proximate hypotheses, if at all, in a purported attempt to refine ultimate understanding qua testing (see below). For instance, Hennig (1966: 122, emphasis added) mistakenly considered this maneuver as a process of testing phylogenetic hypotheses
Likewise, the more characters involved in this process the better (Hennig 1966: 132, emphasis added): “For phylogenetic systematics this means that the reliability of its results increases with the number of individual characters that can be fitted into transformation series.” Rindal and Brower (2011: 331; see also Brower 2006, 2010) go so far as to make the claim that character congruence on cladograms is the only means of phylogenetic assessment. Unfortunately, in the nearly 40 years since Hennig’s statements, the emphasis on congruence or acquiring more character data under the guise of testing has grown in prominence, most notably through the peculiar attempts to ally this activity with Karl Popper’s notions of corroboration or falsification (e.g. Wiley 1975; Gaffney 1979; Eldredge & Cracraft 1980; Rieppel 1988; Kluge 1997a, 1997b, 1999, 2001; Siddall & Kluge 1997; Farris et al. 2001; Faith & Trueman 2001; Faith 2004; de Queiroz & Poe 2001; Lee & Camens 2009; Wiens 2009; Faith et al. 2011). As will be outlined in the next section, the result has been the development of a cycle of at best minimizing, and at worst impeding causal understanding as a consequence of conflating the inferences of evolutionary hypotheses with their being tested.
The process of acquiring causal understanding in biological systematics
The previous two sections outlined what is required to proceed from sense data to three general classes of understanding via inferences of explanatory hypotheses. The last section ended with the observation that some authors in biological systematics have developed a protocol that falsely claims to move ultimate understanding forward by actions that are not valid test procedures. The nature of this confusion will be addressed in part in this section. The subsequent section will examine common approaches to evaluating phylogenetic hypotheses, either in the context of testing or stipulating evidential support.
Conclusions
Scientific understanding occurs by way of explanation through the fitting of observations into some broader theoretical framework, not only by offering initial information about possible causes but also through the ability to anticipate and investigate consequences related to those causes as matters of critical evaluation. Understanding is also context dependent in that it is a state of mind contingent on what individuals regard as being sufficient for meeting their standard of understanding. What provides an adequate explanation for one individual might be unsatisfactory to another. As a result, some yardstick by which to judge the adequacy of understanding is required. Surely any modicum of consensus on the adequacy of hypotheses in the sciences should come from the extent to which results from empirical testing are manifested. Therein lay two problems for biological systematics. Ultimate hypotheses, especially specific and phylogenetic, are often devoid of causal details, such that the state of understanding, beyond the initial explanatory notions presented under the rubric of ‘taxa’ or cladograms are neither pursued nor enhanced. Even if these hypotheses are filled out to the point that valid test predictions can be stipulated, it is likely that actual testing will be impractical in nearly all instances, as noted earlier. Instead, critical assessments of hypotheses are stalled, such that there is the tendency to orient back to original character observations, such as interesting correlations among features, or pursuing investigations of the finer structural components of characters (descriptive) or their ontogenetic development (proximate). In other words, the general reaction is to move backward in an epistemic sense to consider the enhancement of descriptive and proximate understanding, rather than actually pursuing ultimate understanding in terms of critical hypothesis assessment. Taken at face value, there is nothing wrong with such a maneuver, but we do need to be cognizant that enhancing descriptive or proximate understanding does nothing to promote continued ultimate understanding as conceived as testing in the sciences. Several of the classes of systematics hypotheses fail to provide substantive growth in causal understanding for the fact that our tendency is to maneuver away from testing those hypotheses.
เริ่มต้นที่ความเข้าใจในทางชีววิทยาระบบ
แยกความเข้าใจใน 3 ชั้นที่แตกต่างกันเมื่อพูดถึงระบบชีวภาพมีวิธีการแสดง internested ความสัมพันธ์ที่มีอยู่ในการวิจัยระบบ . ในคำอื่น ๆมีแนวโน้มที่จะเป็นสามชั้นของระบบสอบถามความเข้าใจเชิงพรรณนาในรูปแบบข้อความการ consequence ของ desire our เมื่อแก๊ส . understanding ผิว data รอบีอุลเอาวัลเหมือนเดิมของราวของคดีสอบสวน particular , ( that level ของ understanding naturally leads to ครับ questions answerable by causes ต่อสภาพแวดล้อม , given that we routinely observe บ่อยครั้งเราเอา in history ช่วง ,และมีข้อสังเกตในกลุ่มของสิ่งมีชีวิตมีคำถามเพิ่มเติมที่หลากหลายสาเหตุที่ดีที่สุดสามารถใช้ความเข้าใจในระบบชีวภาพ
ต่อความสัมพันธ์ระหว่างชนชั้นของความเข้าใจที่นำเสนอข้างต้นมีแนวโน้มที่จะถ่วงดุล internested จากมุมมองที่เป็นโอกาสของเราที่จะทดสอบสมมติฐานที่ ( 1 ) และ ( 2 ) โดยประมาณและ ( 3 ) ตามลำดับ , สุดยอด , มีแนวโน้มที่จะถูก จำกัด มากขึ้นและดังนั้นจึงน้อยบ่อย ( ฟิทซ์ฮิวจ์ 2010a ) เปรียบเทียบ เช่น ความสามารถในการ ( 1 ได้รับการทดสอบสมมติฐานเชิง ) ที่ผมสังเกตกิ้งก่าสามนิ้ว ( ผม– III , เป็นนอกคอก 2 – 4 ) ในทางตรงกันข้ามกับ 4 นิ้ว ( ผม ( 4 )( ได้รับ 2 ) วิเคราะห์สมมติฐานอธิบายโดยวิธี ontogeny สถานะของนิ้วเท้าฉัน– 3 ในผู้ใหญ่ นี้ ( 3 นั้น ) สุดท้าย ( วิวัฒนาการ ) สมมติฐานอธิบายการปรากฏตัวของนิ้วเท้าฉัน– 3 ในทางตรงกันข้ามกับฉัน– IV ระหว่างบุคคลซึ่งหลายสปีชีส์ที่แตกต่างกันและใช้ประเมินการสังเกตจะใช้งบน้อยที่สุด ( 1 เพลง ) bservations ของคาดโครงสร้างส่วนประกอบที่ประกอบด้วยชั้น– 3 ( ตรงข้ามกับ 2 – 4 ) และการทดสอบสมมติฐานใช้ ontogenetic ( 2 เพลง ) ความมุ่งมั่นของเวลาและทรัพยากรเพื่อสังเกตความสัมพันธ์ของขาและเท้าในแต่ละช่วงประวัติศาสตร์ ชีวิต duringtheir .การทดสอบสมมติฐาน ซึ่งจะเป็นสิ่งที่ท้าทายที่สุด เพราะจะต้องมี ( 3 เพลง ) การเข้าถึงการทดสอบหลักฐานไม่เพียง แต่เกี่ยวกับ เฉพาะ สาเหตุ เหตุการณ์ที่เกี่ยวข้องกับต้นกำเนิดและการตรึงไนโตรเจนของ threetoe เงื่อนไขในประชากรของบรรพบุรุษ แต่ยังมีหลักฐานของสาเหตุ ( s ) ที่ทำให้ต่อมาแยก ( s ) ของประชากร ( s ) ภาษาพูดเรียกว่า ' ซ้อน '
.การประเมินความเข้าใจสาเหตุของเราในระบบชีวภาพว่า พรรณนา วิเคราะห์หรือที่ดีที่สุดจะถูกกำหนดโดยขอบเขตที่การทดสอบสมมติฐาน เซ็นสุ [ 3 ] ได้ ในขณะที่การกระทำของอนุมานสมมติฐานอธิบายให้ความเข้าใจเบื้องต้น ในสมมติฐานเป็นคำตอบอย่างน้อยหนึ่งเจาะจงถามมันคือจุดเด่นของวิทยาศาสตร์ที่เป็นเสน่ห์ในวิกฤตประเมินสมมติฐานดังกล่าวช่วยให้เราไม่เพียง แต่วัดสถานะปัจจุบันของความเข้าใจ แต่ต้องดัดแปลงหรือแก้ไขที่เข้าใจมาตลอดเวลา แต่ตามที่กล่าวไว้ก่อนหน้านี้ , ความสามารถในการทดสอบทางชีวภาพชนิดย่อยสมมติฐานกลายเป็นความก้าวหน้ามากขึ้นยากเป็นหนึ่งซึ่งบรรยายไม่ถูก ให้คำอธิบายที่ดีที่สุดที่โดดเด่นของปัจจัยจำกัดการทดสอบสมมติฐานที่ระดับที่ดีที่สุดคือช่วงเวลาระหว่างผลที่รวดเร็วสรุปสมมติฐานและความสัมพันธ์เชิงสาเหตุเหตุการณ์ด้วยตนเอง the ประวัติและ span ของ from a hypothesized cause ( เขาได้เพียง observed , ต่อหน้า more will : the ตามเงื่อนไขของ evidence เมื่อหลังจากขึ้น hypotheses those ( cleland 2011a ) .ผลของความยากที่แท้จริงกับคำอธิบายที่ดีที่สุดคือการทดสอบที่ สอง ของการเรียนที่โดดเด่นที่สุดของวิวัฒนาการสมมุติฐาน ที่เฉพาะเจาะจงและวิวัฒนาการ ( CF . รูปที่ 1 ) แทบไม่เคยจด ทดสอบ เช่น ไม่มีการเพิ่มความเข้าใจที่แท้จริงผ่านการแก้ไขหรือเปลี่ยนสมมติฐานบนพื้นฐานของการประเมินเชิงประจักษ์ของความสัมพันธ์ . ค่อนข้างonce ultimate hypotheses เวลา been inferred และเฮอะ among systematists is เมื่อ สามา to รูปใหญ่ the inferences ของ additional or revised descriptive ( ต่อสภาพแวดล้อม hypotheses , สาวกับยามเมียส to refine ultimate understanding qua เพลินใช้ see below ) . ตัวอย่างเช่น เฮนนิค ( 1966 : 122 ,เน้นที่เพิ่ม ) ผิดพลาดถือว่าการซ้อมรบครั้งนี้เป็นขั้นตอนของการทดสอบสมมติฐานวิวัฒนาการ
เช่นเดียวกัน ยิ่งตัวละครที่เกี่ยวข้องในกระบวนการนี้ดีกว่า ( เฮนนิค 1966 : 132 , เน้นที่เพิ่มขึ้น ) : " สำหรับตนเอง ซึ่งหมายความ ว่า ความน่าเชื่อถือของผลเพิ่มขึ้นตามจำนวนของตัวละครแต่ละตัวที่สามารถติดตั้งเป็นชุดแปลงร่าง" rindal และบราวเซอร์ ( 2554 : 331 ; ดูยัง บราวเซอร์ 2006 2010 ) ไปตั้งไกล เพื่อให้สอดคล้องกับ cladograms อ้างว่าตัวเป็นเพียง แต่หมายถึงการประเมินต่างๆ . แต่น่าเสียดายที่ในเกือบ 40 ปีตั้งแต่ เฮนนิคงบ , เน้นความสอดคล้องกัน หรือรับข้อมูลตัวละครเพิ่มเติมภายใต้หน้ากากของการทดสอบมีการเติบโตในชื่อเสียง ,ที่สะดุดตาที่สุดผ่านความพยายามเฉพาะพันธมิตรกิจกรรมนี้กับคาร์ล ปอปเปอร์ notions ของการยืนยัน หรือการบิดเบือน ( เช่นนิ่ง 1975 ; กัฟนี่ 1979 ; อิลเดรจ& cracraft 1980 ; rieppel 1988 ; ครุก 1997a 1997b , 1999 , 2001 ; ซีดดาลล์&ครุก 1997 ; ฟาร์ริส et al . 2001 ; ความเชื่อ& trueman 2001 2004 ; ศรัทธา ; เดอ เคยรอซ&โพ 2544 ; ลี & camens 2009 ; วินส์ 2009 ; ศรัทธา et al . 2011 )โดยจะอธิบายในส่วนถัดไป ผลที่ได้รับการพัฒนาวงจรที่ดีที่สุดลด และที่เลวร้ายที่สุดที่เป็นอุปสรรคต่อความเข้าใจสาเหตุเป็นผลมาจาก conflating สอนทำอาหารและวิวัฒนาการของการทดสอบ
กระบวนการรับความเข้าใจสาเหตุ ในระบบชีวภาพ
ก่อนหน้านี้สองส่วนที่ระบุไว้ว่า ต้องดำเนินการจากข้อมูลความรู้สึกสามเรียนทั่วไปของความเข้าใจผ่านการอนุมานของสมมติฐาน the section last ended with the จะมี that some authors in systematics biological เวลา developed a protocol that falsely claims to move understanding ultimate forward by actions that ) procedures valid .ลักษณะของความสับสนนี้จะถูกระบุไว้ในส่วนในส่วนนี้ ส่วนที่ตามมาจะตรวจพบวิธีการประเมินสมมติฐานต่างๆ ทั้งในบริบทของการทดสอบหรือมาตรการสนับสนุน evidential .
เข้าใจข้อสรุปทางวิทยาศาสตร์เกิดขึ้นโดยวิธีการอธิบายผ่านเหมาะสมสังเกตในกรอบทฤษฎีบางอย่างที่กว้างขึ้น ,ไม่เพียง แต่โดยการเสนอข้อมูลเบื้องต้นเกี่ยวกับสาเหตุที่เป็นไปได้ แต่ยังผ่านความสามารถในการคาดการณ์ และศึกษาผลกระทบที่เกี่ยวข้องกับสาเหตุนั้น เป็นเรื่องของการประเมินผล . เข้าใจยังบริบทขึ้นอยู่กับที่เป็นรัฐของจิตใจเกิดขึ้นในสิ่งที่บุคคลถือว่าเป็นเพียงพอสําหรับการประชุมมาตรฐานของพวกเขาเกี่ยวกับอะไรที่ให้คำอธิบายที่เพียงพอสำหรับบุคคลหนึ่งอาจจะไม่ไปอีก เป็นผลให้มีบรรทัดฐานที่ตัดสินความเพียงพอของความเข้าใจที่ถูกต้อง ย่อมมีจำนวนน้อยของฉันทามติเกี่ยวกับความเพียงพอของการวิจัยในวิทยาศาสตร์ควรมาจากขอบเขตซึ่งผลจากการทดสอบเชิงประจักษ์จะปรากฏออกมา วางอยู่ในนั้นสองปัญหาระบบทางชีวภาพสุดยอดโดยเฉพาะเจาะจง และสมมติฐานต่างๆ มักไร้รายละเอียด สาเหตุ เช่น สภาพของความเข้าใจ นอกเหนือจากการเริ่มต้นความคิดที่นำเสนอภายใต้รูบริก ' และ ' หรือ cladograms ไม่ติดตามหรือเพิ่ม ถ้าสมมติฐานเหล่านี้จะเต็มไปจากจุดที่คาดคะเนที่ถูกต้องสามารถระบุการทดสอบ ,มันมีแนวโน้มว่า การทดสอบที่แท้จริงจะยากมาก ในเกือบทุกกรณี ดังที่กล่าวไว้ก่อนหน้านี้ แต่การประเมินของระดับจนตรอก เช่นว่า มีแนวโน้มที่จะ โอเรียนท์กลับไปที่เดิมสังเกตตัวละคร เช่น ความสัมพันธ์ที่น่าสนใจของ คุณสมบัติหรือติดตามการสืบสวนของปลีกย่อยชิ้นส่วนโครงสร้างของตัวละคร ( อธิบาย ) หรือการพัฒนา ontogenetic ( โดยประมาณ ) ในคำอื่น ๆปฏิกิริยาทั่วไปคือการย้ายไปข้างหลังในความรู้สึกความสัมพันธ์ที่จะต้องพิจารณาการเพิ่มเชิงพรรณนาและวิเคราะห์ความเข้าใจมากกว่าการติดตามที่ดีที่สุดจริง ๆเข้าใจในแง่ของการประเมินสมมุติฐานที่สําคัญอุตสาหกรรม at ออน , ซึ่ง nothing wrong with such a maneuver , มี we โดย : Boobs ผู้ใช้ หลังๆ descriptive or ต่อสภาพแวดล้อม understanding does ซู promote understanding ultimate continued as conceived as glassbeads the sciences .หลายชั้นเรียนของตนเองและล้มเหลวเพื่อให้เติบโตในความเข้าใจเนื้อหาสาระเชิงสาเหตุที่ว่าแนวโน้มของเราคือการซ้อมรบห่างจากการทดสอบสมมติฐานเหล่านั้น
การแปล กรุณารอสักครู่..