Descartes, René Du perron
(b. La Haye, Touraine, France, 31 March 1596; d. Stockholm, Sweden, 11 February 1650)
natural philosophy, scientific method, mathematics, optics, mechanics, physiology.
Fontenelle, in the eloquent contrast made in his Éloge de Newton, described Descartes as the man who “tried in one bold leap to put himself at the source of everything, to make himself master of the first principles by means of certain clear and fundamental ideas, so that he could then simply descend to the phenomena of nature as to necessary consequences of these principles.” This famous characterization of Descartes as the theoretician who “set out from what he knew clearly, in order to find the cause of what he saw,” as against Newton the experimenter, who “set out from what he saw, in order to find the cause,” has tended to dominate interpretations of both these men who “saw the need to carry geometry into physics.”1
Descartes was born into the noblesse de robe, whose members contributed notably to intellectual life in seventeenth-century France. His father was conseiller to the Parlement of Brittany; from his mother he received the name du Perron and financial independence from property in Poitou. From the Jesuits of La Flèche he received a modern education in mathematics and physics—including Galileo’s telescopic discoveries—as well as in philosophy and the classics, and there began the twin domination of imagination and geometry over his precocious mind. He described in an early work, the Olympica, how he found “in the writings of the poets weightier thoughts than in those of the philosophers. The reason is that the poets wrote through enthusiasm and the power of imagination.” The seeds of knowledge in us, “as in a flint were” brought to light by philosophers “through reason; struck out through imagination by poets they shine forth more brightly.”2 Then, after graduating in law from the University of Poitiers, as a gentleman volunteer in the army of Prince Maurice of Nassau in 1618 he met Isaac Beeckman at Breda. Beeckman aroused him to self-discovery as a scientific thinker and mathematician and introduced him to a range of problems, especially in mechanics and acoustics, the subject of his first work, the Compendium musicae of 1618; published posthumously in 1650. On 26 March 1619 he reported to Beeckman his first glimpse of “an entirely new science,”3 which was to become his analytical geometry.
Later in the year, on 10 November, then in the duke of Bavaria’s army on the Danube, he had the experience in the famous poêle (lit. “stove,” “well-heated room”), claimed to have given direction to the rest of his life. He described in the Discours de la mèthode how, in a day of solitary thought, he reached two radical conclusions: first, that if he were to discover true knowledge he must carry out the whole program himself, just as a perfect work of art or architecture was always the work of one master hand; second, that he must begin by methodically doubting everything taught in current philosophy and look for self-evident, certain principles from which to reconstruct all the sciences. That night, according to his seventeenthcentury biographer Adrien Baillet, these resolutions were reinforced by three consecutive dreams. He found himself, first, in a street swept by a fierce wind, unable to stand, as his companions were doing, because of a weakness in his right leg; second, awakened by a clap of thunder in a room full of sparks; and third, with a dictionary, then a book in which he read Quid vitae sectabor iter? (“What way of life shall I follow?”), then verses presented by an unknown man beginning Est et non; he recognized the Latin as the opening lines of two poems by Ausonius. Before he finally awoke he had interpreted the first dream as a warning against past errors, the second as the descent of the spirit of truth, and the third as the opening to him of the path to true knowledge. However this incident may have been elaborated in the telling, it symbolizes both the strength and the hazards of Descartes’s unshakable confidence and resolve to work alone. But he did not make his vision his life’s mission for another nine years, during which (either before or after his tour of Italy from 1623 to 1625) he met Mersenne, who was to become his lifelong correspondent, and took part in scientific meetings in Paris. The next decisive incident, according to Baillet, was a public encounter in 1628 in which he demolished the unfortunate Chandoux by using his method to distinguish sharply between true scientific knowledge and mere probability. Among those present was the influential Cardinal de Bérulle, who a few days later charged him to devote his life to working out the application of “his manner of philosophizing... to medicine and mechanics. The one would contribute to the restoration and conservation of health, and the other to some diminution and relief in the labours of mankind.”4 To execute this design he withdrew, toward the end of the year, to the solitary life in the Netherlands which he lived until his last journey to Stockholm in 1649, where, as Queen Christina’s philosopher, he died in his first winter.
The primarily centrifugal direction of Descartes’s thought, moving out into detailed phenomena from a firm central theory (in contrast with the more empirical scientific style of Francis Bacon and Newton), is shown by the sequence of composition of his major writings. He set out his method in the Rules for the Direction of the Mind, left unfinished in 1628 and published posthumously, and in the Discours de la méthode, written in the Netherlands along with the Météores, La dioptrique, and La géométrie, which he presented as examples of the method. All were published in one volume in 1637. At the same time his investigation into the true ontology led him to the radical division of created existence into matter as simply extended substance, given motion at the creation, and mind as unextended thinking substance. This conclusion he held to be guaranteed by the perfection of God, who would not deceive true reason. How these two mutually exclusive and collectively exhaustive categories of substance could have any interaction in the embodied soul that was a man was a question discussed between Gassendi, Hobbes, and Descartes in the Objections and Replies published with his Meditations on First Philosophy in 1641.
It was from these first principles that he had given an account in Le monde, ou Traité de la lumière of cosmogony and cosmology as products simply of matter in motion, making the laws of motion the ultimate “laws of nature” and all scientific explanation ultimately mechanistic. This treatise remained unpublished in Descartes’s lifetime. So too did the associated treatise L’homme, in which he represented animals and the human body as sheer mechanisms, an idea already found in the Rules. He withheld these essays, on the brink of publication, at the news of Galileo’s condemnation in 1633, and instead published his general system of physics, with its Copernicanism mitigated by the idea that all motion is relative, in the Principles of Philosophy in 1644. Finally, he brought physiological psychology within the compass of his system in Les passions de l’âme in 1649. This system aimed to be as complete as Aristotle’s, which it was designed to replace. It was not by chance that it dealt in the same order with many of the same phenomena (such as the rainbow), as well as with others more recently investigated (such as magnetism).
A comparison of Descartes’s performance with his program of scientific method presents a number of apparent contradictions. He made much of the ideal of a mathematically demonstrated physics, yet his fundamental cosmology was so nearly entirely qualitative that he came to fear that he had produced nothing more than a beautiful “romance of nature.”5 His planetary dynamics was shown by Newton to be quantitatively ridiculous. He wrote in the Discours, “I noticed also with respect to experiments [expériences] that they become so much the more necessary, the more we advance in knowledge,”6 yet his fundamental laws of nature, the laws of motion and impact, had to be dismantled by Huygens and Leibniz for their lack of agreement with observation. These apparent contradictions may be resolved in the contrast between Descartes’s theoretical ideal of completed scientific knowledge and the actual process and circumstances of acquiring such knowledge. For the modern reader to pay too much attention to his mechanics and to the Principles, a premature conception of completed science, can obscure Descartes’s firm grasp of the necessity for observation and experiment already expressed in the Rules in his criticism “of those philosophers who neglect experiments and expect truth to rise from their own heads like Minerva from Jupiter’s.”7
No other great philosopher, except perhaps Aristotle, can have spent so much time in experimental observation. According to Baillet, over several years he studied anatomy, dissected and vivisected embryos of birds and cattle, and went on to study chemistry. His correspondence from the Netherlands described dissections of dogs, cats, rabbits, cod, and mackerel; eyes, livers, and hearts obtained from an abattoir; experiments on the weight of the air and on vibrating strings; and observations on rainbows, parahelia, and other optical phenomena. Many of his scientific writings reflect these activities and show sound experimental knowledge, although the extreme formalism of his physiological models obscures the question of his actual knowledge of some aspects of anatomy. Attention to the whole range of his scientific thought and practice shows a clear conception not only of completed scientific knowledge but also of the roles of experiment and hypothesis in making discoveries and finding explanations by which the body of scien
Descartes, Du ฌูล perron(เกิด La Haye เนอมูร์โซ ฝรั่งเศส 31 มีนาคมค.ศ. 1596; d. สต็อกโฮล์ม สวีเดน 11 1650 กุมภาพันธ์)ปรัชญาธรรมชาติ วิทยาศาสตร์ คณิตศาสตร์ เลนส์ กลศาสตร์ สรีรวิทยาFontenelle ในความคมชัด eloquent ในพระ Éloge เดอนิวตัน อธิบาย Descartes เป็นผู้ชายที่ "พยายามกระโดดหนาหนึ่งใส่ตัวเองที่แหล่งที่มาของทุกอย่าง ทำเองในหลักหลักแรกโดยบางใส และพื้นฐานความคิด เพื่อให้เขาได้แล้วก็มาค่ากับปรากฏการณ์ของธรรมชาติเป็นผลจำหลักเหล่านี้" คุณสมบัตินี้มีชื่อเสียงของ Descartes เป็น theoretician ที่ "จากอะไรเขารู้อย่างชัดเจน เพื่อค้นหาสาเหตุของสิ่งที่เขาเห็น, " เดียวกับนิวตัน experimenter ที่ "ออกจากสิ่งที่เขาเห็น เพื่อค้นหาสาเหตุ, " ได้มีแนวโน้มครองตีความของคนเหล่านี้ทั้งที่ "เห็นจำเป็นในการดำเนินการเรขาคณิตเป็นฟิสิกส์"1Descartes เกิดเป็นเสื้อคลุมโบเบลสเซเด สมาชิกที่ส่วนยวดปัญญาชีวิตในฝรั่งเศสศตวรรษที่ seventeenth พ่อของเขาถูก conseiller เพื่อ Parlement ตตานี จากแม่ของเขา เขาได้รับชื่อ du Perron และอิสรภาพทางการเงินจากใน Poitou เยสุอิตลา Flèche เขาได้รับการศึกษาที่ทันสมัยในวิชาคณิตศาสตร์และฟิสิกส์ซึ่งรวมถึงการค้นพบของกาลิเลโอซ้อน — เป็นที่ดีในปรัชญาและคลาสสิค และเริ่มปกครองคู่จินตนาการและเรขาคณิตมีเหนือจิตใจของเขา precocious เขาอธิบายไว้ในการทำงานเริ่มต้น Olympica วิธีการที่เขาพบ "ในงานเขียนของกวี weightier ความคิดกว่าในบรรดานักปรัชญาที่ เหตุผลได้ว่า กวีที่เขียนถึงความกระตือรือร้นและพลังของจินตนาการ" เมล็ดพันธุ์ความรู้เรา "ในมนุษย์ถูก" นำแสงโดยปรัชญา "จากเหตุผล หลงออกผ่านจินตนาการ โดยกวีจะส่องแสงออกมาสดใสขึ้น "2 จากนั้น หลังจากจบการศึกษากฎหมายจากมหาวิทยาลัยปัวตีเย เป็นสุภาพบุรุษเป็นอาสาสมัครในกองทัพของเจ้าชายมอริของนัสใน 1618 เขาตรงตาม Beeckman แซคที่เบรดา Beeckman aroused เขาไป self-discovery thinker วิทยาศาสตร์และนักคณิตศาสตร์ และแนะนำเขาถึงปัญหา โดยเฉพาะอย่างยิ่งในกลศาสตร์และเปลือง เรื่องของงานแรกของเขา musicae ย่อของ 1618 ประกาศ posthumously 1650 บน 26 มีนาคม 1619 เขารายงาน Beeckman เหลือบแรกของเขา "มีทั้งหมดใหม่วิทยาศาสตร์ 3 ที่เป็นเรขาคณิตวิเคราะห์ของเขาLater in the year, on 10 November, then in the duke of Bavaria’s army on the Danube, he had the experience in the famous poêle (lit. “stove,” “well-heated room”), claimed to have given direction to the rest of his life. He described in the Discours de la mèthode how, in a day of solitary thought, he reached two radical conclusions: first, that if he were to discover true knowledge he must carry out the whole program himself, just as a perfect work of art or architecture was always the work of one master hand; second, that he must begin by methodically doubting everything taught in current philosophy and look for self-evident, certain principles from which to reconstruct all the sciences. That night, according to his seventeenthcentury biographer Adrien Baillet, these resolutions were reinforced by three consecutive dreams. He found himself, first, in a street swept by a fierce wind, unable to stand, as his companions were doing, because of a weakness in his right leg; second, awakened by a clap of thunder in a room full of sparks; and third, with a dictionary, then a book in which he read Quid vitae sectabor iter? (“What way of life shall I follow?”), then verses presented by an unknown man beginning Est et non; he recognized the Latin as the opening lines of two poems by Ausonius. Before he finally awoke he had interpreted the first dream as a warning against past errors, the second as the descent of the spirit of truth, and the third as the opening to him of the path to true knowledge. However this incident may have been elaborated in the telling, it symbolizes both the strength and the hazards of Descartes’s unshakable confidence and resolve to work alone. But he did not make his vision his life’s mission for another nine years, during which (either before or after his tour of Italy from 1623 to 1625) he met Mersenne, who was to become his lifelong correspondent, and took part in scientific meetings in Paris. The next decisive incident, according to Baillet, was a public encounter in 1628 in which he demolished the unfortunate Chandoux by using his method to distinguish sharply between true scientific knowledge and mere probability. Among those present was the influential Cardinal de Bérulle, who a few days later charged him to devote his life to working out the application of “his manner of philosophizing... to medicine and mechanics. The one would contribute to the restoration and conservation of health, and the other to some diminution and relief in the labours of mankind.”4 To execute this design he withdrew, toward the end of the year, to the solitary life in the Netherlands which he lived until his last journey to Stockholm in 1649, where, as Queen Christina’s philosopher, he died in his first winter.ทิศทางของแรงเหวี่ยงเป็นหลักคิดของ Descartes ย้ายเป็นปรากฏการณ์รายละเอียดจากบริษัทเซ็นทรัลทฤษฎี (in contrast with ประจักษ์เพิ่มเติมวิทยาศาสตร์แบบนิวตันและเบคอน Francis), จะแสดงตามลำดับขององค์ประกอบของงานเขียนสำคัญของเขา เขากำหนดวิธีของเขาในกฎสำหรับทิศทางของจิตใจ ด้านซ้ายยังไม่เสร็จสิ้นใน 1628 และเผยแพร่เขียนในเนเธอร์แลนด์กับ Météores, posthumously และ méthode เดอลา Discours ลา dioptrique และ La géométrie ซึ่งเขาแสดงเป็นตัวอย่างของวิธีการ ทั้งหมดถูกเผยแพร่ในปริมาณหนึ่งใน 1637 ในเวลาเดียวกันสอบสวนเป็นภววิทยาแท้จริงของเขานำเขาไปกองอยู่สร้างรุนแรงในเรื่องเป็นสารเพียงขยาย ให้เคลื่อนไหวในการสร้าง และจิตใจเป็นสาร unextended คิด บทสรุปนี้เขาจัดขึ้นเพื่อจะรับประกัน โดยสมบูรณ์ของพระเจ้าจะหลอกลวงจริงเหตุผล วิธีเหล่านี้สองนั่น และครบถ้วนสมบูรณ์โดยรวมประเภทของสารได้มีการโต้ตอบในชีวิต embodied ที่ชายได้คำถามกล่าวถึงระหว่าง Gassendi มัสฮอบส์ และ Descartes ในอุปสรรคและตอบประกาศกับครวญในปรัชญาแรกในค.ศ. 1641มันเป็นจากหลักการเหล่านี้แรกที่เขาได้กำหนดให้องค์กรในเลอมอนด์ ou Traité de la lumière ต้นตอจักรวาลวิทยาและจักรวาลเป็นผลิตภัณฑ์เพียงเรื่องในการเคลื่อนไหว ทำกฎหมายของการเคลื่อนไหวที่ดีที่สุด "กฎหมายธรรมชาติ" และคำอธิบายทางวิทยาศาสตร์ทั้งหมดในที่สุดกลไกการทำงาน ตำรับนี้ยังคงประกาศในชีวิตของ Descartes เพื่อให้ได้ตำรับเกี่ยวข้อง L'homme ซึ่งเขาแสดงสัตว์และร่างกายมนุษย์เป็นกลไกที่แท้จริง ความคิดแล้วพบในกฎเกินไป เขาถอนบทความเหล่านี้ เกี่ยวกับขอบพิมพ์ ที่มีข่าวลงโทษของกาลิเลโอใน 1633 และแทน ประกาศผลทั่วไปของฟิสิกส์ กับ Copernicanism ของบรรเทา โดยคิดว่า การเคลื่อนไหวทั้งหมดเป็นญาติ ในหลักการปรัชญาในค.ศ. 1644 สุดท้าย เขานำจิตวิทยา physiological ภายในอาณาเขตของเขาระบบในเลส์หลงใหล de l'âme ในปีค.ศ. 1649 ระบบนี้มุ่งที่จะเสร็จสมบูรณ์ที่อริสโตเติลเป็น ซึ่งถูกออกแบบมาเพื่อแทน มันไม่ใช่ตามมันแจกในลำดับเดียวกับหลายปรากฏการณ์เดียวกัน (เช่นสายรุ้ง), เช่นเดียวกับผู้อื่นเมื่อเร็ว ๆ นี้สืบสวน (เช่นเหล็ก)การเปรียบเทียบประสิทธิภาพของ Descartes ด้วยโปรแกรมของเขาของวิธีการทางวิทยาศาสตร์นำเสนอจำนวนฮฺที่ชัดเจน เขาทำมากของฟิสิกส์ mathematically สาธิต ยังจักรวาลพื้นฐานของเขาได้ดังนั้นคุณภาพเกือบทั้งหมดที่พระองค์กลัวว่า เขาได้ผลิตอะไรมากกว่าสวยงาม "รักธรรมชาติ"5 dynamics ของดาวเคราะห์ที่แสดง โดยนิวตันจะ quantitatively ไร้สาระ เขาเขียนใน Discours "ผมสังเกตเห็นยังกับทดลอง [expériences] ที่ จะกลายเป็นมากจำเป็นมาก ยิ่งเราล่วงหน้าในความรู้ 6 แต่เขากฎพื้นฐานของธรรมชาติ กฎของการเคลื่อนไหวและผลกระทบ มีการรื้อถอนโดย Huygens Leibniz สำหรับการขาดข้อตกลงกับการสังเกต ฮฺที่ชัดเจนเหล่านี้อาจถูกแก้ไขได้ในความแตกต่างระหว่างของ Descartes เหมาะทฤษฎีของความรู้วิทยาศาสตร์เสร็จสมบูรณ์กระบวนการจริง และสถานการณ์ของการได้รับความรู้ดังกล่าว สำหรับผู้อ่านทันสมัยใส่มากเกินไป และหลักการกลศาสตร์ของเขา ความคิดก่อนวัยวิทยาศาสตร์เสร็จสมบูรณ์ สามารถบดบังของ Descartes ยืนยันความเข้าใจของความจำเป็นในการสังเกตและทดลองแสดงไว้แล้วในกฎของการวิจารณ์ของเขา "ของเหล่านักปรัชญาที่ละเลยทดลอง และคาดว่าความจริงจะเพิ่มขึ้นจากศีรษะของพวกเขาเองเช่นมิเนอร์ว่าจากของดาวพฤหัสบดี"7อื่น ๆ ไม่มีนักปราชญ์ดี ยกเว้นบางทีอาริสโตเติล สามารถได้ใช้เวลามากในการสังเกตทดลอง ตาม Baillet หลายปี เขาศึกษากายวิภาคศาสตร์ dissected vivisected โคลนของนกและสัตว์เลี้ยง และไปเรียนเคมี จดหมายของเขาจากเนเธอร์แลนด์อธิบาย dissections สุนัข แมว กระต่าย cod และ ปลา ตา livers และหัวใจที่ได้จากโรงฆ่าสัตว์ ทดลองน้ำหนักของอากาศ และ การสั่นสะเทือนสาย และในปลาเรนโบว์ parahelia และอื่น ๆ ปรากฏการณ์แสง งานเขียนทางวิทยาศาสตร์ของเขามากมายสะท้อนกิจกรรมเหล่านี้ และแสดงความรู้ทดลองเสียง ถึงแม้ว่าคำถามที่เขารู้จริงบางด้านของกายวิภาคศาสตร์ข้อมูลปฐมภูมิ formalism มากรุ่นสรีรวิทยาของเขา ความคิดทางวิทยาศาสตร์และฝึกเขาให้แสดงความคิดที่ชัดเจนไม่เพียง ความรู้ทางวิทยาศาสตร์แล้ว แต่บทบาทของสมมติฐานและการทดลองค้นพบ และหาคำอธิบายที่ร่างกายของ scien
การแปล กรุณารอสักครู่..

Descartes, René Du perron
(b. La Haye, Touraine, France, 31 March 1596; d. Stockholm, Sweden, 11 February 1650)
natural philosophy, scientific method, mathematics, optics, mechanics, physiology.
Fontenelle, in the eloquent contrast made in his Éloge de Newton, described Descartes as the man who “tried in one bold leap to put himself at the source of everything, to make himself master of the first principles by means of certain clear and fundamental ideas, so that he could then simply descend to the phenomena of nature as to necessary consequences of these principles.” This famous characterization of Descartes as the theoretician who “set out from what he knew clearly, in order to find the cause of what he saw,” as against Newton the experimenter, who “set out from what he saw, in order to find the cause,” has tended to dominate interpretations of both these men who “saw the need to carry geometry into physics.”1
Descartes was born into the noblesse de robe, whose members contributed notably to intellectual life in seventeenth-century France. His father was conseiller to the Parlement of Brittany; from his mother he received the name du Perron and financial independence from property in Poitou. From the Jesuits of La Flèche he received a modern education in mathematics and physics—including Galileo’s telescopic discoveries—as well as in philosophy and the classics, and there began the twin domination of imagination and geometry over his precocious mind. He described in an early work, the Olympica, how he found “in the writings of the poets weightier thoughts than in those of the philosophers. The reason is that the poets wrote through enthusiasm and the power of imagination.” The seeds of knowledge in us, “as in a flint were” brought to light by philosophers “through reason; struck out through imagination by poets they shine forth more brightly.”2 Then, after graduating in law from the University of Poitiers, as a gentleman volunteer in the army of Prince Maurice of Nassau in 1618 he met Isaac Beeckman at Breda. Beeckman aroused him to self-discovery as a scientific thinker and mathematician and introduced him to a range of problems, especially in mechanics and acoustics, the subject of his first work, the Compendium musicae of 1618; published posthumously in 1650. On 26 March 1619 he reported to Beeckman his first glimpse of “an entirely new science,”3 which was to become his analytical geometry.
Later in the year, on 10 November, then in the duke of Bavaria’s army on the Danube, he had the experience in the famous poêle (lit. “stove,” “well-heated room”), claimed to have given direction to the rest of his life. He described in the Discours de la mèthode how, in a day of solitary thought, he reached two radical conclusions: first, that if he were to discover true knowledge he must carry out the whole program himself, just as a perfect work of art or architecture was always the work of one master hand; second, that he must begin by methodically doubting everything taught in current philosophy and look for self-evident, certain principles from which to reconstruct all the sciences. That night, according to his seventeenthcentury biographer Adrien Baillet, these resolutions were reinforced by three consecutive dreams. He found himself, first, in a street swept by a fierce wind, unable to stand, as his companions were doing, because of a weakness in his right leg; second, awakened by a clap of thunder in a room full of sparks; and third, with a dictionary, then a book in which he read Quid vitae sectabor iter? (“What way of life shall I follow?”), then verses presented by an unknown man beginning Est et non; he recognized the Latin as the opening lines of two poems by Ausonius. Before he finally awoke he had interpreted the first dream as a warning against past errors, the second as the descent of the spirit of truth, and the third as the opening to him of the path to true knowledge. However this incident may have been elaborated in the telling, it symbolizes both the strength and the hazards of Descartes’s unshakable confidence and resolve to work alone. But he did not make his vision his life’s mission for another nine years, during which (either before or after his tour of Italy from 1623 to 1625) he met Mersenne, who was to become his lifelong correspondent, and took part in scientific meetings in Paris. The next decisive incident, according to Baillet, was a public encounter in 1628 in which he demolished the unfortunate Chandoux by using his method to distinguish sharply between true scientific knowledge and mere probability. Among those present was the influential Cardinal de Bérulle, who a few days later charged him to devote his life to working out the application of “his manner of philosophizing... to medicine and mechanics. The one would contribute to the restoration and conservation of health, and the other to some diminution and relief in the labours of mankind.”4 To execute this design he withdrew, toward the end of the year, to the solitary life in the Netherlands which he lived until his last journey to Stockholm in 1649, where, as Queen Christina’s philosopher, he died in his first winter.
The primarily centrifugal direction of Descartes’s thought, moving out into detailed phenomena from a firm central theory (in contrast with the more empirical scientific style of Francis Bacon and Newton), is shown by the sequence of composition of his major writings. He set out his method in the Rules for the Direction of the Mind, left unfinished in 1628 and published posthumously, and in the Discours de la méthode, written in the Netherlands along with the Météores, La dioptrique, and La géométrie, which he presented as examples of the method. All were published in one volume in 1637. At the same time his investigation into the true ontology led him to the radical division of created existence into matter as simply extended substance, given motion at the creation, and mind as unextended thinking substance. This conclusion he held to be guaranteed by the perfection of God, who would not deceive true reason. How these two mutually exclusive and collectively exhaustive categories of substance could have any interaction in the embodied soul that was a man was a question discussed between Gassendi, Hobbes, and Descartes in the Objections and Replies published with his Meditations on First Philosophy in 1641.
It was from these first principles that he had given an account in Le monde, ou Traité de la lumière of cosmogony and cosmology as products simply of matter in motion, making the laws of motion the ultimate “laws of nature” and all scientific explanation ultimately mechanistic. This treatise remained unpublished in Descartes’s lifetime. So too did the associated treatise L’homme, in which he represented animals and the human body as sheer mechanisms, an idea already found in the Rules. He withheld these essays, on the brink of publication, at the news of Galileo’s condemnation in 1633, and instead published his general system of physics, with its Copernicanism mitigated by the idea that all motion is relative, in the Principles of Philosophy in 1644. Finally, he brought physiological psychology within the compass of his system in Les passions de l’âme in 1649. This system aimed to be as complete as Aristotle’s, which it was designed to replace. It was not by chance that it dealt in the same order with many of the same phenomena (such as the rainbow), as well as with others more recently investigated (such as magnetism).
A comparison of Descartes’s performance with his program of scientific method presents a number of apparent contradictions. He made much of the ideal of a mathematically demonstrated physics, yet his fundamental cosmology was so nearly entirely qualitative that he came to fear that he had produced nothing more than a beautiful “romance of nature.”5 His planetary dynamics was shown by Newton to be quantitatively ridiculous. He wrote in the Discours, “I noticed also with respect to experiments [expériences] that they become so much the more necessary, the more we advance in knowledge,”6 yet his fundamental laws of nature, the laws of motion and impact, had to be dismantled by Huygens and Leibniz for their lack of agreement with observation. These apparent contradictions may be resolved in the contrast between Descartes’s theoretical ideal of completed scientific knowledge and the actual process and circumstances of acquiring such knowledge. For the modern reader to pay too much attention to his mechanics and to the Principles, a premature conception of completed science, can obscure Descartes’s firm grasp of the necessity for observation and experiment already expressed in the Rules in his criticism “of those philosophers who neglect experiments and expect truth to rise from their own heads like Minerva from Jupiter’s.”7
No other great philosopher, except perhaps Aristotle, can have spent so much time in experimental observation. According to Baillet, over several years he studied anatomy, dissected and vivisected embryos of birds and cattle, and went on to study chemistry. His correspondence from the Netherlands described dissections of dogs, cats, rabbits, cod, and mackerel; eyes, livers, and hearts obtained from an abattoir; experiments on the weight of the air and on vibrating strings; and observations on rainbows, parahelia, and other optical phenomena. Many of his scientific writings reflect these activities and show sound experimental knowledge, although the extreme formalism of his physiological models obscures the question of his actual knowledge of some aspects of anatomy. Attention to the whole range of his scientific thought and practice shows a clear conception not only of completed scientific knowledge but also of the roles of experiment and hypothesis in making discoveries and finding explanations by which the body of scien
การแปล กรุณารอสักครู่..
