In this paper, we present a novel noise suppression and detail preservation algorithm. The test image is firstly pre-processed through a multiresolution analysis employing the discrete wavelet transform. Then, we apply a fast and robust total variation technique, incorporating a statistical representation in the style of maximum likelihood estimation. Finally, we compare this proposed approach to current state-of-the-art denoising methods using synthetic and real images. The results demonstrate encouraging performance of our algorithm. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Image & Graphics is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)